MW 18x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010037
GTIN/EAN: 5906301810360
Średnica Ø
18 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
2.86 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.95 kg / 9.34 N
Indukcja magnetyczna
101.91 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
1.353 ZŁ z VAT / szt. + cena za transport
1.100 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie napisz za pomocą
formularz
na naszej stronie.
Udźwig i wygląd magnesu neodymowego sprawdzisz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MW 18x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010037 |
| GTIN/EAN | 5906301810360 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 2.86 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.95 kg / 9.34 N |
| Indukcja magnetyczna ~ ? | 101.91 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Poniższe wartości stanowią bezpośredni efekt symulacji fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 18x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1019 Gs
101.9 mT
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
słaby uchwyt |
| 1 mm |
975 Gs
97.5 mT
|
0.87 kg / 1.92 lbs
869.2 g / 8.5 N
|
słaby uchwyt |
| 2 mm |
902 Gs
90.2 mT
|
0.74 kg / 1.64 lbs
744.7 g / 7.3 N
|
słaby uchwyt |
| 3 mm |
812 Gs
81.2 mT
|
0.60 kg / 1.33 lbs
603.4 g / 5.9 N
|
słaby uchwyt |
| 5 mm |
619 Gs
61.9 mT
|
0.35 kg / 0.77 lbs
350.6 g / 3.4 N
|
słaby uchwyt |
| 10 mm |
274 Gs
27.4 mT
|
0.07 kg / 0.15 lbs
68.7 g / 0.7 N
|
słaby uchwyt |
| 15 mm |
126 Gs
12.6 mT
|
0.01 kg / 0.03 lbs
14.6 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
65 Gs
6.5 mT
|
0.00 kg / 0.01 lbs
3.9 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MW 18x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 18x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.29 kg / 0.63 lbs
285.0 g / 2.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.10 kg / 0.21 lbs
95.0 g / 0.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 18x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.10 kg / 0.21 lbs
95.0 g / 0.9 N
|
| 1 mm |
|
0.24 kg / 0.52 lbs
237.5 g / 2.3 N
|
| 2 mm |
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
| 3 mm |
|
0.71 kg / 1.57 lbs
712.5 g / 7.0 N
|
| 5 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 10 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 11 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 12 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 18x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
OK |
| 40 °C | -2.2% |
0.93 kg / 2.05 lbs
929.1 g / 9.1 N
|
OK |
| 60 °C | -4.4% |
0.91 kg / 2.00 lbs
908.2 g / 8.9 N
|
|
| 80 °C | -6.6% |
0.89 kg / 1.96 lbs
887.3 g / 8.7 N
|
|
| 100 °C | -28.8% |
0.68 kg / 1.49 lbs
676.4 g / 6.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 18x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.63 kg / 3.59 lbs
1 960 Gs
|
0.24 kg / 0.54 lbs
244 g / 2.4 N
|
N/A |
| 1 mm |
1.57 kg / 3.47 lbs
2 002 Gs
|
0.24 kg / 0.52 lbs
236 g / 2.3 N
|
1.41 kg / 3.12 lbs
~0 Gs
|
| 2 mm |
1.49 kg / 3.29 lbs
1 949 Gs
|
0.22 kg / 0.49 lbs
224 g / 2.2 N
|
1.34 kg / 2.96 lbs
~0 Gs
|
| 3 mm |
1.39 kg / 3.06 lbs
1 883 Gs
|
0.21 kg / 0.46 lbs
209 g / 2.0 N
|
1.25 kg / 2.76 lbs
~0 Gs
|
| 5 mm |
1.16 kg / 2.55 lbs
1 717 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.04 kg / 2.30 lbs
~0 Gs
|
| 10 mm |
0.60 kg / 1.33 lbs
1 238 Gs
|
0.09 kg / 0.20 lbs
90 g / 0.9 N
|
0.54 kg / 1.19 lbs
~0 Gs
|
| 20 mm |
0.12 kg / 0.26 lbs
548 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 18x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 18x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.19 km/h
(5.33 m/s)
|
0.04 J | |
| 30 mm |
31.85 km/h
(8.85 m/s)
|
0.11 J | |
| 50 mm |
41.10 km/h
(11.42 m/s)
|
0.19 J | |
| 100 mm |
58.12 km/h
(16.15 m/s)
|
0.37 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 18x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 18x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 519 Mx | 35.2 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 18x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.95 kg | Standard |
| Woda (dno rzeki) |
1.09 kg
(+0.14 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Kruchość to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której grubość wynosi ok. 10 mm
- o wypolerowanej powierzchni kontaktu
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Odstęp (pomiędzy magnesem a blachą), gdyż nawet bardzo mała odległość (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje udźwig.
Zasady BHP dla użytkowników magnesów
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
To nie jest zabawka
Bezwzględnie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Zasady obsługi
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż zdążysz zareagować.
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Smartfony i tablety
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Trwała utrata siły
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i udźwig.
Ochrona urządzeń
Ekstremalne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Uczulenie na powłokę
Część populacji ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może wywołać zaczerwienienie skóry. Zalecamy stosowanie rękawic bezlateksowych.
Uszkodzenia ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
