MW 18x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010037
GTIN/EAN: 5906301810360
Średnica Ø
18 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
2.86 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.95 kg / 9.34 N
Indukcja magnetyczna
101.91 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
1.353 ZŁ z VAT / szt. + cena za transport
1.100 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie pisz za pomocą
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig oraz wygląd magnesu wyliczysz w naszym
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Karta produktu - MW 18x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010037 |
| GTIN/EAN | 5906301810360 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 2.86 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.95 kg / 9.34 N |
| Indukcja magnetyczna ~ ? | 101.91 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe dane są wynik kalkulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 18x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1019 Gs
101.9 mT
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
bezpieczny |
| 1 mm |
975 Gs
97.5 mT
|
0.87 kg / 1.92 lbs
869.2 g / 8.5 N
|
bezpieczny |
| 2 mm |
902 Gs
90.2 mT
|
0.74 kg / 1.64 lbs
744.7 g / 7.3 N
|
bezpieczny |
| 3 mm |
812 Gs
81.2 mT
|
0.60 kg / 1.33 lbs
603.4 g / 5.9 N
|
bezpieczny |
| 5 mm |
619 Gs
61.9 mT
|
0.35 kg / 0.77 lbs
350.6 g / 3.4 N
|
bezpieczny |
| 10 mm |
274 Gs
27.4 mT
|
0.07 kg / 0.15 lbs
68.7 g / 0.7 N
|
bezpieczny |
| 15 mm |
126 Gs
12.6 mT
|
0.01 kg / 0.03 lbs
14.6 g / 0.1 N
|
bezpieczny |
| 20 mm |
65 Gs
6.5 mT
|
0.00 kg / 0.01 lbs
3.9 g / 0.0 N
|
bezpieczny |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 18x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
120.0 g / 1.2 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
70.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 18x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.29 kg / 0.63 lbs
285.0 g / 2.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.10 kg / 0.21 lbs
95.0 g / 0.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 18x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.10 kg / 0.21 lbs
95.0 g / 0.9 N
|
| 1 mm |
|
0.24 kg / 0.52 lbs
237.5 g / 2.3 N
|
| 2 mm |
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
| 3 mm |
|
0.71 kg / 1.57 lbs
712.5 g / 7.0 N
|
| 5 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 10 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 11 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 12 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 18x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
OK |
| 40 °C | -2.2% |
0.93 kg / 2.05 lbs
929.1 g / 9.1 N
|
OK |
| 60 °C | -4.4% |
0.91 kg / 2.00 lbs
908.2 g / 8.9 N
|
|
| 80 °C | -6.6% |
0.89 kg / 1.96 lbs
887.3 g / 8.7 N
|
|
| 100 °C | -28.8% |
0.68 kg / 1.49 lbs
676.4 g / 6.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 18x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.63 kg / 3.59 lbs
1 960 Gs
|
0.24 kg / 0.54 lbs
244 g / 2.4 N
|
N/A |
| 1 mm |
1.57 kg / 3.47 lbs
2 002 Gs
|
0.24 kg / 0.52 lbs
236 g / 2.3 N
|
1.41 kg / 3.12 lbs
~0 Gs
|
| 2 mm |
1.49 kg / 3.29 lbs
1 949 Gs
|
0.22 kg / 0.49 lbs
224 g / 2.2 N
|
1.34 kg / 2.96 lbs
~0 Gs
|
| 3 mm |
1.39 kg / 3.06 lbs
1 883 Gs
|
0.21 kg / 0.46 lbs
209 g / 2.0 N
|
1.25 kg / 2.76 lbs
~0 Gs
|
| 5 mm |
1.16 kg / 2.55 lbs
1 717 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.04 kg / 2.30 lbs
~0 Gs
|
| 10 mm |
0.60 kg / 1.33 lbs
1 238 Gs
|
0.09 kg / 0.20 lbs
90 g / 0.9 N
|
0.54 kg / 1.19 lbs
~0 Gs
|
| 20 mm |
0.12 kg / 0.26 lbs
548 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
74 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 18x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 18x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.19 km/h
(5.33 m/s)
|
0.04 J | |
| 30 mm |
31.85 km/h
(8.85 m/s)
|
0.11 J | |
| 50 mm |
41.10 km/h
(11.42 m/s)
|
0.19 J | |
| 100 mm |
58.12 km/h
(16.15 m/s)
|
0.37 J |
Tabela 9: Parametry powłoki (trwałość)
MW 18x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 18x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 519 Mx | 35.2 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 18x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.95 kg | Standard |
| Woda (dno rzeki) |
1.09 kg
(+0.14 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, działającej jako idealny przewodnik strumienia
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- o wypolerowanej powierzchni kontaktu
- przy zerowej szczelinie (brak powłok)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (między magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Kruchy spiek
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Nie przegrzewaj magnesów
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie magnetometrów w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Zagrożenie dla najmłodszych
Neodymowe magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Nadwrażliwość na metale
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zasady obsługi
Stosuj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Rozruszniki serca
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
