MW 8x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010105
GTIN/EAN: 5906301811046
Średnica Ø
8 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
1.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.17 kg / 21.31 N
Indukcja magnetyczna
483.41 mT / 4834 Gs
Powłoka
[NiCuNi] nikiel
0.836 ZŁ z VAT / szt. + cena za transport
0.680 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Dzwoń do nas
+48 888 99 98 98
albo napisz poprzez
formularz zgłoszeniowy
na stronie kontakt.
Właściwości a także kształt magnesów wyliczysz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 8x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 8x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010105 |
| GTIN/EAN | 5906301811046 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 1.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.17 kg / 21.31 N |
| Indukcja magnetyczna ~ ? | 483.41 mT / 4834 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Niniejsze informacje stanowią bezpośredni efekt symulacji fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
MW 8x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4830 Gs
483.0 mT
|
2.17 kg / 2170.0 g
21.3 N
|
uwaga |
| 1 mm |
3655 Gs
365.5 mT
|
1.24 kg / 1242.8 g
12.2 N
|
bezpieczny |
| 2 mm |
2610 Gs
261.0 mT
|
0.63 kg / 633.9 g
6.2 N
|
bezpieczny |
| 3 mm |
1825 Gs
182.5 mT
|
0.31 kg / 310.0 g
3.0 N
|
bezpieczny |
| 5 mm |
915 Gs
91.5 mT
|
0.08 kg / 77.9 g
0.8 N
|
bezpieczny |
| 10 mm |
234 Gs
23.4 mT
|
0.01 kg / 5.1 g
0.1 N
|
bezpieczny |
| 15 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.7 g
0.0 N
|
bezpieczny |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 8x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.43 kg / 434.0 g
4.3 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 248.0 g
2.4 N
|
| 2 mm | Stal (~0.2) |
0.13 kg / 126.0 g
1.2 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 62.0 g
0.6 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 8x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.65 kg / 651.0 g
6.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.43 kg / 434.0 g
4.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 217.0 g
2.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.09 kg / 1085.0 g
10.6 N
|
MW 8x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 217.0 g
2.1 N
|
| 1 mm |
|
0.54 kg / 542.5 g
5.3 N
|
| 2 mm |
|
1.09 kg / 1085.0 g
10.6 N
|
| 5 mm |
|
2.17 kg / 2170.0 g
21.3 N
|
| 10 mm |
|
2.17 kg / 2170.0 g
21.3 N
|
MW 8x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.17 kg / 2170.0 g
21.3 N
|
OK |
| 40 °C | -2.2% |
2.12 kg / 2122.3 g
20.8 N
|
OK |
| 60 °C | -4.4% |
2.07 kg / 2074.5 g
20.4 N
|
OK |
| 80 °C | -6.6% |
2.03 kg / 2026.8 g
19.9 N
|
|
| 100 °C | -28.8% |
1.55 kg / 1545.0 g
15.2 N
|
MW 8x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
7.23 kg / 7228 g
70.9 N
5 742 Gs
|
N/A |
| 1 mm |
5.58 kg / 5585 g
54.8 N
8 490 Gs
|
5.03 kg / 5026 g
49.3 N
~0 Gs
|
| 2 mm |
4.14 kg / 4140 g
40.6 N
7 310 Gs
|
3.73 kg / 3726 g
36.6 N
~0 Gs
|
| 3 mm |
2.98 kg / 2984 g
29.3 N
6 207 Gs
|
2.69 kg / 2686 g
26.3 N
~0 Gs
|
| 5 mm |
1.48 kg / 1479 g
14.5 N
4 369 Gs
|
1.33 kg / 1331 g
13.1 N
~0 Gs
|
| 10 mm |
0.26 kg / 260 g
2.5 N
1 830 Gs
|
0.23 kg / 234 g
2.3 N
~0 Gs
|
| 20 mm |
0.02 kg / 17 g
0.2 N
468 Gs
|
0.02 kg / 15 g
0.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
47 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 8x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 8x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.31 km/h
(9.53 m/s)
|
0.09 J | |
| 30 mm |
59.35 km/h
(16.49 m/s)
|
0.26 J | |
| 50 mm |
76.62 km/h
(21.28 m/s)
|
0.43 J | |
| 100 mm |
108.35 km/h
(30.10 m/s)
|
0.85 J |
MW 8x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 8x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 450 Mx | 24.5 µWb |
| Współczynnik Pc | 0.68 | Wysoki (Stabilny) |
MW 8x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.17 kg | Standard |
| Woda (dno rzeki) |
2.48 kg
(+0.31 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.68
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- z użyciem podłoża ze stali niskowęglowej, która służy jako zwora magnetyczna
- o grubości nie mniejszej niż 10 mm
- o szlifowanej powierzchni kontaktu
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig określano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza nośność.
Chronić przed dziećmi
Silne magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Rozprysk materiału
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Zakaz obróbki
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Interferencja magnetyczna
Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Ochrona urządzeń
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Siła neodymu
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Nie przegrzewaj magnesów
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
