MW 8x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010105
GTIN/EAN: 5906301811046
Średnica Ø
8 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
1.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.17 kg / 21.31 N
Indukcja magnetyczna
483.41 mT / 4834 Gs
Powłoka
[NiCuNi] nikiel
0.836 ZŁ z VAT / szt. + cena za transport
0.680 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie skontaktuj się poprzez
formularz zapytania
na stronie kontakt.
Siłę oraz formę magnesów neodymowych testujesz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry techniczne - MW 8x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010105 |
| GTIN/EAN | 5906301811046 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 1.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.17 kg / 21.31 N |
| Indukcja magnetyczna ~ ? | 483.41 mT / 4834 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Przedstawione wartości stanowią wynik analizy matematycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 8x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4830 Gs
483.0 mT
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
uwaga |
| 1 mm |
3655 Gs
365.5 mT
|
1.24 kg / 2.74 lbs
1242.8 g / 12.2 N
|
bezpieczny |
| 2 mm |
2610 Gs
261.0 mT
|
0.63 kg / 1.40 lbs
633.9 g / 6.2 N
|
bezpieczny |
| 3 mm |
1825 Gs
182.5 mT
|
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
bezpieczny |
| 5 mm |
915 Gs
91.5 mT
|
0.08 kg / 0.17 lbs
77.9 g / 0.8 N
|
bezpieczny |
| 10 mm |
234 Gs
23.4 mT
|
0.01 kg / 0.01 lbs
5.1 g / 0.1 N
|
bezpieczny |
| 15 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
bezpieczny |
| 20 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 8x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 2 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
126.0 g / 1.2 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
62.0 g / 0.6 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 8x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.65 kg / 1.44 lbs
651.0 g / 6.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.22 kg / 0.48 lbs
217.0 g / 2.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.09 kg / 2.39 lbs
1085.0 g / 10.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 8x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.22 kg / 0.48 lbs
217.0 g / 2.1 N
|
| 1 mm |
|
0.54 kg / 1.20 lbs
542.5 g / 5.3 N
|
| 2 mm |
|
1.09 kg / 2.39 lbs
1085.0 g / 10.6 N
|
| 3 mm |
|
1.63 kg / 3.59 lbs
1627.5 g / 16.0 N
|
| 5 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 10 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 11 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
| 12 mm |
|
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 8x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.17 kg / 4.78 lbs
2170.0 g / 21.3 N
|
OK |
| 40 °C | -2.2% |
2.12 kg / 4.68 lbs
2122.3 g / 20.8 N
|
OK |
| 60 °C | -4.4% |
2.07 kg / 4.57 lbs
2074.5 g / 20.4 N
|
OK |
| 80 °C | -6.6% |
2.03 kg / 4.47 lbs
2026.8 g / 19.9 N
|
|
| 100 °C | -28.8% |
1.55 kg / 3.41 lbs
1545.0 g / 15.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 8x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
7.23 kg / 15.94 lbs
5 742 Gs
|
1.08 kg / 2.39 lbs
1084 g / 10.6 N
|
N/A |
| 1 mm |
5.58 kg / 12.31 lbs
8 490 Gs
|
0.84 kg / 1.85 lbs
838 g / 8.2 N
|
5.03 kg / 11.08 lbs
~0 Gs
|
| 2 mm |
4.14 kg / 9.13 lbs
7 310 Gs
|
0.62 kg / 1.37 lbs
621 g / 6.1 N
|
3.73 kg / 8.21 lbs
~0 Gs
|
| 3 mm |
2.98 kg / 6.58 lbs
6 207 Gs
|
0.45 kg / 0.99 lbs
448 g / 4.4 N
|
2.69 kg / 5.92 lbs
~0 Gs
|
| 5 mm |
1.48 kg / 3.26 lbs
4 369 Gs
|
0.22 kg / 0.49 lbs
222 g / 2.2 N
|
1.33 kg / 2.93 lbs
~0 Gs
|
| 10 mm |
0.26 kg / 0.57 lbs
1 830 Gs
|
0.04 kg / 0.09 lbs
39 g / 0.4 N
|
0.23 kg / 0.51 lbs
~0 Gs
|
| 20 mm |
0.02 kg / 0.04 lbs
468 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 8x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 8x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.31 km/h
(9.53 m/s)
|
0.09 J | |
| 30 mm |
59.35 km/h
(16.49 m/s)
|
0.26 J | |
| 50 mm |
76.62 km/h
(21.28 m/s)
|
0.43 J | |
| 100 mm |
108.35 km/h
(30.10 m/s)
|
0.85 J |
Tabela 9: Odporność na korozję
MW 8x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 8x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 450 Mx | 24.5 µWb |
| Współczynnik Pc | 0.68 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 8x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.17 kg | Standard |
| Woda (dno rzeki) |
2.48 kg
(+0.31 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.68
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- z zastosowaniem podłoża ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- o idealnie gładkiej powierzchni styku
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet niewielka przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – za chuda blacha nie przyjmuje całego pola, przez co część strumienia ucieka na drugą stronę.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Dla uczulonych
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Przegrzanie magnesu
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i udźwig.
Zakaz obróbki
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Wpływ na smartfony
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Urazy ciała
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Nigdy wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Niszczenie danych
Potężne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Bezpieczna praca
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Produkt nie dla dzieci
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
