MW 8x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010102
GTIN/EAN: 5906301811015
Średnica Ø
8 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
5.65 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.47 kg / 14.45 N
Indukcja magnetyczna
598.12 mT / 5981 Gs
Powłoka
[NiCuNi] nikiel
3.44 ZŁ z VAT / szt. + cena za transport
2.80 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie napisz za pomocą
formularz zapytania
na stronie kontakt.
Masę i budowę magnesu neodymowego przetestujesz dzięki naszemu
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 8x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 8x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010102 |
| GTIN/EAN | 5906301811015 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 8 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 5.65 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.47 kg / 14.45 N |
| Indukcja magnetyczna ~ ? | 598.12 mT / 5981 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Niniejsze dane stanowią bezpośredni efekt symulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 8x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5975 Gs
597.5 mT
|
1.47 kg / 1470.0 g
14.4 N
|
niskie ryzyko |
| 1 mm |
4511 Gs
451.1 mT
|
0.84 kg / 837.8 g
8.2 N
|
niskie ryzyko |
| 2 mm |
3262 Gs
326.2 mT
|
0.44 kg / 438.2 g
4.3 N
|
niskie ryzyko |
| 3 mm |
2332 Gs
233.2 mT
|
0.22 kg / 224.0 g
2.2 N
|
niskie ryzyko |
| 5 mm |
1238 Gs
123.8 mT
|
0.06 kg / 63.1 g
0.6 N
|
niskie ryzyko |
| 10 mm |
366 Gs
36.6 mT
|
0.01 kg / 5.5 g
0.1 N
|
niskie ryzyko |
| 15 mm |
155 Gs
15.5 mT
|
0.00 kg / 1.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
80 Gs
8.0 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
| 30 mm |
30 Gs
3.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MW 8x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.29 kg / 294.0 g
2.9 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 168.0 g
1.6 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 88.0 g
0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 8x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.44 kg / 441.0 g
4.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.29 kg / 294.0 g
2.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 147.0 g
1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.74 kg / 735.0 g
7.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 8x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 147.0 g
1.4 N
|
| 1 mm |
|
0.37 kg / 367.5 g
3.6 N
|
| 2 mm |
|
0.74 kg / 735.0 g
7.2 N
|
| 5 mm |
|
1.47 kg / 1470.0 g
14.4 N
|
| 10 mm |
|
1.47 kg / 1470.0 g
14.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 8x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.47 kg / 1470.0 g
14.4 N
|
OK |
| 40 °C | -2.2% |
1.44 kg / 1437.7 g
14.1 N
|
OK |
| 60 °C | -4.4% |
1.41 kg / 1405.3 g
13.8 N
|
OK |
| 80 °C | -6.6% |
1.37 kg / 1373.0 g
13.5 N
|
|
| 100 °C | -28.8% |
1.05 kg / 1046.6 g
10.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 8x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
11.06 kg / 11065 g
108.5 N
6 130 Gs
|
N/A |
| 1 mm |
8.49 kg / 8490 g
83.3 N
10 469 Gs
|
7.64 kg / 7641 g
75.0 N
~0 Gs
|
| 2 mm |
6.31 kg / 6306 g
61.9 N
9 022 Gs
|
5.68 kg / 5676 g
55.7 N
~0 Gs
|
| 3 mm |
4.59 kg / 4590 g
45.0 N
7 697 Gs
|
4.13 kg / 4131 g
40.5 N
~0 Gs
|
| 5 mm |
2.36 kg / 2357 g
23.1 N
5 516 Gs
|
2.12 kg / 2122 g
20.8 N
~0 Gs
|
| 10 mm |
0.48 kg / 475 g
4.7 N
2 476 Gs
|
0.43 kg / 428 g
4.2 N
~0 Gs
|
| 20 mm |
0.04 kg / 41 g
0.4 N
731 Gs
|
0.04 kg / 37 g
0.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
94 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 8x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 8x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.31 km/h
(4.53 m/s)
|
0.06 J | |
| 30 mm |
28.18 km/h
(7.83 m/s)
|
0.17 J | |
| 50 mm |
36.37 km/h
(10.10 m/s)
|
0.29 J | |
| 100 mm |
51.44 km/h
(14.29 m/s)
|
0.58 J |
Tabela 9: Odporność na korozję
MW 8x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 8x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 306 Mx | 33.1 µWb |
| Współczynnik Pc | 1.19 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 8x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.47 kg | Standard |
| Woda (dno rzeki) |
1.68 kg
(+0.21 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.19
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi tylko ~1% (wg testów).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, działającej jako zwora magnetyczna
- której wymiar poprzeczny to min. 10 mm
- o wypolerowanej powierzchni styku
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (między magnesem a metalem), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Łatwopalność
Pył powstający podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach w warunkach domowych.
Urządzenia elektroniczne
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Nie lekceważ mocy
Używaj magnesy świadomie. Ich potężna moc może zszokować nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Produkt nie dla dzieci
Te produkty magnetyczne nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Uszkodzenia czujników
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Siła zgniatająca
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Interferencja medyczna
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Magnesy są kruche
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Reakcje alergiczne
Pewna grupa użytkowników ma nadwrażliwość na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może skutkować silną reakcję alergiczną. Sugerujemy używanie rękawiczek ochronnych.
