MW 100x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010001
GTIN/EAN: 5906301810018
Średnica Ø
100 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
589.05 g
Kierunek magnesowania
↑ osiowy
Udźwig
40.86 kg / 400.80 N
Indukcja magnetyczna
121.59 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
368.50 ZŁ z VAT / szt. + cena za transport
299.59 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub zostaw wiadomość poprzez
formularz kontaktowy
na stronie kontakt.
Udźwig oraz formę elementów magnetycznych zweryfikujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MW 100x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010001 |
| GTIN/EAN | 5906301810018 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 589.05 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 40.86 kg / 400.80 N |
| Indukcja magnetyczna ~ ? | 121.59 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Niniejsze informacje są rezultat kalkulacji matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 100x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1216 Gs
121.6 mT
|
40.86 kg / 40860.0 g
400.8 N
|
niebezpieczny! |
| 1 mm |
1208 Gs
120.8 mT
|
40.35 kg / 40345.4 g
395.8 N
|
niebezpieczny! |
| 2 mm |
1199 Gs
119.9 mT
|
39.74 kg / 39742.7 g
389.9 N
|
niebezpieczny! |
| 3 mm |
1189 Gs
118.9 mT
|
39.06 kg / 39062.0 g
383.2 N
|
niebezpieczny! |
| 5 mm |
1165 Gs
116.5 mT
|
37.49 kg / 37490.2 g
367.8 N
|
niebezpieczny! |
| 10 mm |
1087 Gs
108.7 mT
|
32.64 kg / 32640.7 g
320.2 N
|
niebezpieczny! |
| 15 mm |
991 Gs
99.1 mT
|
27.15 kg / 27153.9 g
266.4 N
|
niebezpieczny! |
| 20 mm |
887 Gs
88.7 mT
|
21.76 kg / 21758.7 g
213.5 N
|
niebezpieczny! |
| 30 mm |
683 Gs
68.3 mT
|
12.90 kg / 12902.7 g
126.6 N
|
niebezpieczny! |
| 50 mm |
379 Gs
37.9 mT
|
3.97 kg / 3968.4 g
38.9 N
|
mocny |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 100x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.17 kg / 8172.0 g
80.2 N
|
| 1 mm | Stal (~0.2) |
8.07 kg / 8070.0 g
79.2 N
|
| 2 mm | Stal (~0.2) |
7.95 kg / 7948.0 g
78.0 N
|
| 3 mm | Stal (~0.2) |
7.81 kg / 7812.0 g
76.6 N
|
| 5 mm | Stal (~0.2) |
7.50 kg / 7498.0 g
73.6 N
|
| 10 mm | Stal (~0.2) |
6.53 kg / 6528.0 g
64.0 N
|
| 15 mm | Stal (~0.2) |
5.43 kg / 5430.0 g
53.3 N
|
| 20 mm | Stal (~0.2) |
4.35 kg / 4352.0 g
42.7 N
|
| 30 mm | Stal (~0.2) |
2.58 kg / 2580.0 g
25.3 N
|
| 50 mm | Stal (~0.2) |
0.79 kg / 794.0 g
7.8 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 100x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.26 kg / 12258.0 g
120.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.17 kg / 8172.0 g
80.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.09 kg / 4086.0 g
40.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
20.43 kg / 20430.0 g
200.4 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 100x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.04 kg / 2043.0 g
20.0 N
|
| 1 mm |
|
5.11 kg / 5107.5 g
50.1 N
|
| 2 mm |
|
10.22 kg / 10215.0 g
100.2 N
|
| 5 mm |
|
25.54 kg / 25537.5 g
250.5 N
|
| 10 mm |
|
40.86 kg / 40860.0 g
400.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 100x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
40.86 kg / 40860.0 g
400.8 N
|
OK |
| 40 °C | -2.2% |
39.96 kg / 39961.1 g
392.0 N
|
OK |
| 60 °C | -4.4% |
39.06 kg / 39062.2 g
383.2 N
|
|
| 80 °C | -6.6% |
38.16 kg / 38163.2 g
374.4 N
|
|
| 100 °C | -28.8% |
29.09 kg / 29092.3 g
285.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 100x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
71.58 kg / 71579 g
702.2 N
2 302 Gs
|
N/A |
| 1 mm |
71.15 kg / 71151 g
698.0 N
2 424 Gs
|
64.04 kg / 64036 g
628.2 N
~0 Gs
|
| 2 mm |
70.68 kg / 70677 g
693.3 N
2 416 Gs
|
63.61 kg / 63609 g
624.0 N
~0 Gs
|
| 3 mm |
70.17 kg / 70167 g
688.3 N
2 408 Gs
|
63.15 kg / 63150 g
619.5 N
~0 Gs
|
| 5 mm |
69.04 kg / 69042 g
677.3 N
2 388 Gs
|
62.14 kg / 62138 g
609.6 N
~0 Gs
|
| 10 mm |
65.68 kg / 65676 g
644.3 N
2 329 Gs
|
59.11 kg / 59108 g
579.8 N
~0 Gs
|
| 20 mm |
57.18 kg / 57180 g
560.9 N
2 173 Gs
|
51.46 kg / 51462 g
504.8 N
~0 Gs
|
| 50 mm |
29.67 kg / 29666 g
291.0 N
1 565 Gs
|
26.70 kg / 26700 g
261.9 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 100x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 14.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 100x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.87 km/h
(3.30 m/s)
|
3.20 J | |
| 30 mm |
17.18 km/h
(4.77 m/s)
|
6.71 J | |
| 50 mm |
19.89 km/h
(5.52 m/s)
|
8.99 J | |
| 100 mm |
26.67 km/h
(7.41 m/s)
|
16.17 J |
Tabela 9: Odporność na korozję
MW 100x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 100x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 125 951 Mx | 1259.5 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 100x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 40.86 kg | Standard |
| Woda (dno rzeki) |
46.78 kg
(+5.92 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – od czego zależy?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- o przekroju przynajmniej 10 mm
- z płaszczyzną idealnie równą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
- Szczelina – obecność jakiejkolwiek warstwy (farba, taśma, szczelina) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą przyciągać słabiej.
- Struktura powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między magnesem, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Smartfony i tablety
Ważna informacja: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Ryzyko złamań
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Niklowa powłoka a alergia
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Siła neodymu
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Ryzyko połknięcia
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem dzieci i zwierząt.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
