MW 100x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010001
GTIN/EAN: 5906301810018
Średnica Ø
100 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
589.05 g
Kierunek magnesowania
↑ osiowy
Udźwig
40.86 kg / 400.80 N
Indukcja magnetyczna
121.59 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
368.50 ZŁ z VAT / szt. + cena za transport
299.59 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie napisz za pomocą
formularz zgłoszeniowy
przez naszą stronę.
Parametry a także kształt magnesów neodymowych skontrolujesz u nas w
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 100x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 100x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010001 |
| GTIN/EAN | 5906301810018 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 100 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 589.05 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 40.86 kg / 400.80 N |
| Indukcja magnetyczna ~ ? | 121.59 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Poniższe dane stanowią bezpośredni efekt analizy matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 100x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1216 Gs
121.6 mT
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
krytyczny poziom |
| 1 mm |
1208 Gs
120.8 mT
|
40.35 kg / 88.95 lbs
40345.4 g / 395.8 N
|
krytyczny poziom |
| 2 mm |
1199 Gs
119.9 mT
|
39.74 kg / 87.62 lbs
39742.7 g / 389.9 N
|
krytyczny poziom |
| 3 mm |
1189 Gs
118.9 mT
|
39.06 kg / 86.12 lbs
39062.0 g / 383.2 N
|
krytyczny poziom |
| 5 mm |
1165 Gs
116.5 mT
|
37.49 kg / 82.65 lbs
37490.2 g / 367.8 N
|
krytyczny poziom |
| 10 mm |
1087 Gs
108.7 mT
|
32.64 kg / 71.96 lbs
32640.7 g / 320.2 N
|
krytyczny poziom |
| 15 mm |
991 Gs
99.1 mT
|
27.15 kg / 59.86 lbs
27153.9 g / 266.4 N
|
krytyczny poziom |
| 20 mm |
887 Gs
88.7 mT
|
21.76 kg / 47.97 lbs
21758.7 g / 213.5 N
|
krytyczny poziom |
| 30 mm |
683 Gs
68.3 mT
|
12.90 kg / 28.45 lbs
12902.7 g / 126.6 N
|
krytyczny poziom |
| 50 mm |
379 Gs
37.9 mT
|
3.97 kg / 8.75 lbs
3968.4 g / 38.9 N
|
średnie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 100x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.17 kg / 18.02 lbs
8172.0 g / 80.2 N
|
| 1 mm | Stal (~0.2) |
8.07 kg / 17.79 lbs
8070.0 g / 79.2 N
|
| 2 mm | Stal (~0.2) |
7.95 kg / 17.52 lbs
7948.0 g / 78.0 N
|
| 3 mm | Stal (~0.2) |
7.81 kg / 17.22 lbs
7812.0 g / 76.6 N
|
| 5 mm | Stal (~0.2) |
7.50 kg / 16.53 lbs
7498.0 g / 73.6 N
|
| 10 mm | Stal (~0.2) |
6.53 kg / 14.39 lbs
6528.0 g / 64.0 N
|
| 15 mm | Stal (~0.2) |
5.43 kg / 11.97 lbs
5430.0 g / 53.3 N
|
| 20 mm | Stal (~0.2) |
4.35 kg / 9.59 lbs
4352.0 g / 42.7 N
|
| 30 mm | Stal (~0.2) |
2.58 kg / 5.69 lbs
2580.0 g / 25.3 N
|
| 50 mm | Stal (~0.2) |
0.79 kg / 1.75 lbs
794.0 g / 7.8 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 100x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.26 kg / 27.02 lbs
12258.0 g / 120.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.17 kg / 18.02 lbs
8172.0 g / 80.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.09 kg / 9.01 lbs
4086.0 g / 40.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 100x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.04 kg / 4.50 lbs
2043.0 g / 20.0 N
|
| 1 mm |
|
5.11 kg / 11.26 lbs
5107.5 g / 50.1 N
|
| 2 mm |
|
10.22 kg / 22.52 lbs
10215.0 g / 100.2 N
|
| 3 mm |
|
15.32 kg / 33.78 lbs
15322.5 g / 150.3 N
|
| 5 mm |
|
25.54 kg / 56.30 lbs
25537.5 g / 250.5 N
|
| 10 mm |
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
| 11 mm |
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
| 12 mm |
|
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 100x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
40.86 kg / 90.08 lbs
40860.0 g / 400.8 N
|
OK |
| 40 °C | -2.2% |
39.96 kg / 88.10 lbs
39961.1 g / 392.0 N
|
OK |
| 60 °C | -4.4% |
39.06 kg / 86.12 lbs
39062.2 g / 383.2 N
|
|
| 80 °C | -6.6% |
38.16 kg / 84.14 lbs
38163.2 g / 374.4 N
|
|
| 100 °C | -28.8% |
29.09 kg / 64.14 lbs
29092.3 g / 285.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 100x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
71.58 kg / 157.80 lbs
2 302 Gs
|
10.74 kg / 23.67 lbs
10737 g / 105.3 N
|
N/A |
| 1 mm |
71.15 kg / 156.86 lbs
2 424 Gs
|
10.67 kg / 23.53 lbs
10673 g / 104.7 N
|
64.04 kg / 141.17 lbs
~0 Gs
|
| 2 mm |
70.68 kg / 155.82 lbs
2 416 Gs
|
10.60 kg / 23.37 lbs
10602 g / 104.0 N
|
63.61 kg / 140.23 lbs
~0 Gs
|
| 3 mm |
70.17 kg / 154.69 lbs
2 408 Gs
|
10.53 kg / 23.20 lbs
10525 g / 103.3 N
|
63.15 kg / 139.22 lbs
~0 Gs
|
| 5 mm |
69.04 kg / 152.21 lbs
2 388 Gs
|
10.36 kg / 22.83 lbs
10356 g / 101.6 N
|
62.14 kg / 136.99 lbs
~0 Gs
|
| 10 mm |
65.68 kg / 144.79 lbs
2 329 Gs
|
9.85 kg / 21.72 lbs
9851 g / 96.6 N
|
59.11 kg / 130.31 lbs
~0 Gs
|
| 20 mm |
57.18 kg / 126.06 lbs
2 173 Gs
|
8.58 kg / 18.91 lbs
8577 g / 84.1 N
|
51.46 kg / 113.45 lbs
~0 Gs
|
| 50 mm |
29.67 kg / 65.40 lbs
1 565 Gs
|
4.45 kg / 9.81 lbs
4450 g / 43.7 N
|
26.70 kg / 58.86 lbs
~0 Gs
|
| 60 mm |
22.60 kg / 49.83 lbs
1 366 Gs
|
3.39 kg / 7.47 lbs
3390 g / 33.3 N
|
20.34 kg / 44.85 lbs
~0 Gs
|
| 70 mm |
16.98 kg / 37.43 lbs
1 184 Gs
|
2.55 kg / 5.61 lbs
2546 g / 25.0 N
|
15.28 kg / 33.68 lbs
~0 Gs
|
| 80 mm |
12.64 kg / 27.87 lbs
1 022 Gs
|
1.90 kg / 4.18 lbs
1896 g / 18.6 N
|
11.38 kg / 25.08 lbs
~0 Gs
|
| 90 mm |
9.38 kg / 20.67 lbs
880 Gs
|
1.41 kg / 3.10 lbs
1406 g / 13.8 N
|
8.44 kg / 18.60 lbs
~0 Gs
|
| 100 mm |
6.95 kg / 15.33 lbs
758 Gs
|
1.04 kg / 2.30 lbs
1043 g / 10.2 N
|
6.26 kg / 13.79 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 100x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 14.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 13.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 100x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.87 km/h
(3.30 m/s)
|
3.20 J | |
| 30 mm |
17.18 km/h
(4.77 m/s)
|
6.71 J | |
| 50 mm |
19.89 km/h
(5.52 m/s)
|
8.99 J | |
| 100 mm |
26.67 km/h
(7.41 m/s)
|
16.17 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 100x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 100x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 125 951 Mx | 1259.5 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 100x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 40.86 kg | Standard |
| Woda (dno rzeki) |
46.78 kg
(+5.92 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Co wpływa na udźwig w praktyce
- Szczelina – obecność jakiejkolwiek warstwy (rdza, taśma, szczelina) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża udźwig.
Instrukcja bezpiecznej obsługi magnesów
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Rozprysk materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Unikaj kontaktu w przypadku alergii
Pewna grupa użytkowników wykazuje alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Dłuższy kontakt może skutkować silną reakcję alergiczną. Sugerujemy używanie rękawiczek ochronnych.
Chronić przed dziećmi
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Nie lekceważ mocy
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Wpływ na smartfony
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie kompasów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Zagrożenie zapłonem
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Siła zgniatająca
Silne magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa przyciągające się elementy.
