MPL 25x10x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020387
GTIN/EAN: 5906301811862
Długość
25 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
5.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.14 kg / 40.56 N
Indukcja magnetyczna
230.69 mT / 2307 Gs
Powłoka
[NiCuNi] nikiel
3.57 ZŁ z VAT / szt. + cena za transport
2.90 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo napisz poprzez
nasz formularz online
na stronie kontaktowej.
Parametry a także formę magnesu neodymowego przetestujesz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane - MPL 25x10x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x10x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020387 |
| GTIN/EAN | 5906301811862 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 5.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.14 kg / 40.56 N |
| Indukcja magnetyczna ~ ? | 230.69 mT / 2307 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Niniejsze informacje stanowią wynik kalkulacji fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MPL 25x10x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2306 Gs
230.6 mT
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
uwaga |
| 1 mm |
2050 Gs
205.0 mT
|
3.27 kg / 7.21 lbs
3272.4 g / 32.1 N
|
uwaga |
| 2 mm |
1752 Gs
175.2 mT
|
2.39 kg / 5.27 lbs
2388.9 g / 23.4 N
|
uwaga |
| 3 mm |
1463 Gs
146.3 mT
|
1.67 kg / 3.68 lbs
1667.1 g / 16.4 N
|
niskie ryzyko |
| 5 mm |
1000 Gs
100.0 mT
|
0.78 kg / 1.72 lbs
779.2 g / 7.6 N
|
niskie ryzyko |
| 10 mm |
416 Gs
41.6 mT
|
0.13 kg / 0.30 lbs
134.4 g / 1.3 N
|
niskie ryzyko |
| 15 mm |
200 Gs
20.0 mT
|
0.03 kg / 0.07 lbs
31.0 g / 0.3 N
|
niskie ryzyko |
| 20 mm |
108 Gs
10.8 mT
|
0.01 kg / 0.02 lbs
9.0 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
40 Gs
4.0 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 25x10x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| 1 mm | Stal (~0.2) |
0.65 kg / 1.44 lbs
654.0 g / 6.4 N
|
| 2 mm | Stal (~0.2) |
0.48 kg / 1.05 lbs
478.0 g / 4.7 N
|
| 3 mm | Stal (~0.2) |
0.33 kg / 0.74 lbs
334.0 g / 3.3 N
|
| 5 mm | Stal (~0.2) |
0.16 kg / 0.34 lbs
156.0 g / 1.5 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 25x10x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.24 kg / 2.74 lbs
1242.0 g / 12.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 25x10x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.41 kg / 0.91 lbs
414.0 g / 4.1 N
|
| 1 mm |
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| 2 mm |
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
| 3 mm |
|
3.10 kg / 6.85 lbs
3105.0 g / 30.5 N
|
| 5 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 10 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 11 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
| 12 mm |
|
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 25x10x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.14 kg / 9.13 lbs
4140.0 g / 40.6 N
|
OK |
| 40 °C | -2.2% |
4.05 kg / 8.93 lbs
4048.9 g / 39.7 N
|
OK |
| 60 °C | -4.4% |
3.96 kg / 8.73 lbs
3957.8 g / 38.8 N
|
|
| 80 °C | -6.6% |
3.87 kg / 8.52 lbs
3866.8 g / 37.9 N
|
|
| 100 °C | -28.8% |
2.95 kg / 6.50 lbs
2947.7 g / 28.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 25x10x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.20 kg / 18.07 lbs
3 767 Gs
|
1.23 kg / 2.71 lbs
1230 g / 12.1 N
|
N/A |
| 1 mm |
7.38 kg / 16.27 lbs
4 377 Gs
|
1.11 kg / 2.44 lbs
1107 g / 10.9 N
|
6.64 kg / 14.65 lbs
~0 Gs
|
| 2 mm |
6.48 kg / 14.28 lbs
4 101 Gs
|
0.97 kg / 2.14 lbs
972 g / 9.5 N
|
5.83 kg / 12.86 lbs
~0 Gs
|
| 3 mm |
5.58 kg / 12.30 lbs
3 805 Gs
|
0.84 kg / 1.84 lbs
837 g / 8.2 N
|
5.02 kg / 11.07 lbs
~0 Gs
|
| 5 mm |
3.97 kg / 8.74 lbs
3 208 Gs
|
0.59 kg / 1.31 lbs
595 g / 5.8 N
|
3.57 kg / 7.87 lbs
~0 Gs
|
| 10 mm |
1.54 kg / 3.40 lbs
2 001 Gs
|
0.23 kg / 0.51 lbs
231 g / 2.3 N
|
1.39 kg / 3.06 lbs
~0 Gs
|
| 20 mm |
0.27 kg / 0.59 lbs
831 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.53 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
127 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
80 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 25x10x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 25x10x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.90 km/h
(7.75 m/s)
|
0.17 J | |
| 30 mm |
47.38 km/h
(13.16 m/s)
|
0.49 J | |
| 50 mm |
61.15 km/h
(16.99 m/s)
|
0.81 J | |
| 100 mm |
86.48 km/h
(24.02 m/s)
|
1.62 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 25x10x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 25x10x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 928 Mx | 59.3 µWb |
| Współczynnik Pc | 0.25 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 25x10x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.14 kg | Standard |
| Woda (dno rzeki) |
4.74 kg
(+0.60 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.25
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki powłoce (NiCuNi, Au, srebro) mają nowoczesny, metaliczny wygląd.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Dystans – występowanie jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Ogromna siła
Używaj magnesy z rozwagą. Ich potężna moc może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Ryzyko pęknięcia
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Obróbka mechaniczna
Proszek powstający podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Ostrzeżenie dla sercowców
Osoby z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Uczulenie na powłokę
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Zagrożenie dla najmłodszych
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem dzieci i zwierząt.
Uszkodzenia czujników
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Trwała utrata siły
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i udźwig.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
