Potężne magnesy neodymowe: płytkowe i walcowe

Chcesz kupić naprawdę silne magnesy? Mamy w ofercie kompleksowy asortyment magnesów o różnych kształtach i wymiarach. To najlepszy wybór do użytku w domu, warsztatu oraz zadań przemysłowych. Przejrzyj asortyment z szybką wysyłką.

sprawdź pełną ofertę

Magnet fishing: mocne zestawy F200/F400

Odkryj pasję polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Nierdzewna konstrukcja oraz mocne linki są niezawodne w rzekach i jeziorach.

wybierz zestaw dla siebie

Uchwyty magnetyczne przemysłowe

Niezawodne rozwiązania do montażu bezinwazyjnego. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają szybkie usprawnienie pracy na halach produkcyjnych. Są niezastąpione przy instalacji lamp, sensorów oraz reklam.

zobacz zastosowania przemysłowe

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 6x6x6 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020175

GTIN/EAN: 5906301811817

5.00

Długość

6 mm [±0,1 mm]

Szerokość

6 mm [±0,1 mm]

Wysokość

6 mm [±0,1 mm]

Waga

1.62 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.38 kg / 13.54 N

Indukcja magnetyczna

539.50 mT / 5395 Gs

Powłoka

[NiCuNi] nikiel

0.898 z VAT / szt. + cena za transport

0.730 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.730 ZŁ
0.898 ZŁ
cena od 900 szt.
0.686 ZŁ
0.844 ZŁ
cena od 3500 szt.
0.642 ZŁ
0.790 ZŁ
Chcesz skonsultować wybór?

Dzwoń do nas +48 888 99 98 98 albo napisz przez formularz kontaktowy na naszej stronie.
Moc a także kształt magnesu neodymowego obliczysz w naszym modułowym kalkulatorze.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

Parametry - MPL 6x6x6 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 6x6x6 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020175
GTIN/EAN 5906301811817
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 6 mm [±0,1 mm]
Szerokość 6 mm [±0,1 mm]
Wysokość 6 mm [±0,1 mm]
Waga 1.62 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.38 kg / 13.54 N
Indukcja magnetyczna ~ ? 539.50 mT / 5395 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 6x6x6 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu neodymowego - raport

Poniższe informacje stanowią bezpośredni efekt kalkulacji inżynierskiej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MPL 6x6x6 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 5389 Gs
538.9 mT
1.38 kg / 1380.0 g
13.5 N
niskie ryzyko
1 mm 3805 Gs
380.5 mT
0.69 kg / 688.0 g
6.7 N
niskie ryzyko
2 mm 2530 Gs
253.0 mT
0.30 kg / 304.3 g
3.0 N
niskie ryzyko
3 mm 1671 Gs
167.1 mT
0.13 kg / 132.7 g
1.3 N
niskie ryzyko
5 mm 784 Gs
78.4 mT
0.03 kg / 29.2 g
0.3 N
niskie ryzyko
10 mm 192 Gs
19.2 mT
0.00 kg / 1.8 g
0.0 N
niskie ryzyko
15 mm 73 Gs
7.3 mT
0.00 kg / 0.3 g
0.0 N
niskie ryzyko
20 mm 35 Gs
3.5 mT
0.00 kg / 0.1 g
0.0 N
niskie ryzyko
30 mm 12 Gs
1.2 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
50 mm 3 Gs
0.3 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko

Tabela 2: Równoległa siła zsuwania (pion)
MPL 6x6x6 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.28 kg / 276.0 g
2.7 N
1 mm Stal (~0.2) 0.14 kg / 138.0 g
1.4 N
2 mm Stal (~0.2) 0.06 kg / 60.0 g
0.6 N
3 mm Stal (~0.2) 0.03 kg / 26.0 g
0.3 N
5 mm Stal (~0.2) 0.01 kg / 6.0 g
0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 6x6x6 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.41 kg / 414.0 g
4.1 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.28 kg / 276.0 g
2.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.14 kg / 138.0 g
1.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.69 kg / 690.0 g
6.8 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 6x6x6 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.14 kg / 138.0 g
1.4 N
1 mm
25%
0.35 kg / 345.0 g
3.4 N
2 mm
50%
0.69 kg / 690.0 g
6.8 N
5 mm
100%
1.38 kg / 1380.0 g
13.5 N
10 mm
100%
1.38 kg / 1380.0 g
13.5 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MPL 6x6x6 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 1.38 kg / 1380.0 g
13.5 N
OK
40 °C -2.2% 1.35 kg / 1349.6 g
13.2 N
OK
60 °C -4.4% 1.32 kg / 1319.3 g
12.9 N
OK
80 °C -6.6% 1.29 kg / 1288.9 g
12.6 N
100 °C -28.8% 0.98 kg / 982.6 g
9.6 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 6x6x6 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 6.44 kg / 6445 g
63.2 N
5 949 Gs
N/A
1 mm 4.66 kg / 4663 g
45.7 N
9 167 Gs
4.20 kg / 4196 g
41.2 N
~0 Gs
2 mm 3.21 kg / 3213 g
31.5 N
7 610 Gs
2.89 kg / 2892 g
28.4 N
~0 Gs
3 mm 2.15 kg / 2152 g
21.1 N
6 228 Gs
1.94 kg / 1937 g
19.0 N
~0 Gs
5 mm 0.94 kg / 936 g
9.2 N
4 107 Gs
0.84 kg / 842 g
8.3 N
~0 Gs
10 mm 0.14 kg / 136 g
1.3 N
1 568 Gs
0.12 kg / 123 g
1.2 N
~0 Gs
20 mm 0.01 kg / 8 g
0.1 N
384 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
39 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 6x6x6 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.5 cm
Urządzenie mobilne 40 Gs (4.0 mT) 2.0 cm
Pilot do auta 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 6x6x6 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 29.46 km/h
(8.18 m/s)
0.05 J
30 mm 50.98 km/h
(14.16 m/s)
0.16 J
50 mm 65.82 km/h
(18.28 m/s)
0.27 J
100 mm 93.08 km/h
(25.86 m/s)
0.54 J

Tabela 9: Specyfikacja ochrony powierzchni
MPL 6x6x6 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Flux)
MPL 6x6x6 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 1 982 Mx 19.8 µWb
Współczynnik Pc 0.84 Wysoki (Stabilny)

Tabela 11: Hydrostatyka i wyporność
MPL 6x6x6 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.38 kg Standard
Woda (dno rzeki) 1.58 kg
(+0.20 kg Zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Uwaga: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły oderwania.

2. Wpływ grubości blachy

*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.

3. Wytrzymałość temperaturowa

*W klasie N38 granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020175-2025
Kalkulator miar
Siła (udźwig)

Moc pola

Sprawdź inne propozycje

Produkt ten to bardzo silny magnes w kształcie płytki wykonany z materiału NdFeB, co przy wymiarach 6x6x6 mm i wadze 1.62 g gwarantuje najwyższą jakość połączenia. Ten blok magnetyczny o sile 13.54 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Kluczem do sukcesu jest przesunięcie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Aby rozłączyć model MPL 6x6x6 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy ogromną ostrożność, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Nigdy nie używaj metalowych narzędzi do podważania, gdyż kruchy materiał NdFeB może odprysnąć i uszkodzić oczy.
Stanowią kluczowy element w produkcji generatorów oraz systemów transportu bliskiego. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Klienci często wybierają ten model do wieszania narzędzi na listwach oraz do zaawansowanych projektów DIY i modelarskich, gdzie liczy się precyzja i moc.
Do montażu magnesów płaskich MPL 6x6x6 / N38 najlepiej używać mocne kleje epoksydowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Pamiętaj, aby przed klejeniem oczyścić i odtłuścić powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Standardowo model MPL 6x6x6 / N38 jest magnesowany osiowo (wymiar 6 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Model ten charakteryzuje się wymiarami 6x6x6 mm, co przy wadze 1.62 g czyni go elementem o imponującej gęstości energii. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 1.38 kg (siła ~13.54 N), co przy tak płaskim kształcie świadczy o dużej mocy materiału. Produkt spełnia normy dla magnesów klasy N38.

Zalety i wady magnesów neodymowych Nd2Fe14B.

Plusy

Poza ponadprzeciętną wydajnością magnetyczną, nasze magnesy posiadają dodatkowe korzyści::
  • Cechują się stabilnością – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
  • Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
  • Dzięki warstwie ochronnej (nikiel, Au, Ag) zyskują estetyczny, błyszczący wygląd.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
  • Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
  • Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
  • Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.

Wady

Mimo zalet, posiadają też wady:
  • Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
  • Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
  • Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.

Charakterystyka udźwigu

Optymalny udźwig magnesu neodymowegood czego zależy?

Siła oderwania została wyznaczona dla optymalnej konfiguracji, obejmującej:
  • z zastosowaniem blachy ze miękkiej stali, pełniącej rolę zwora magnetyczna
  • o grubości przynajmniej 10 mm
  • charakteryzującej się brakiem chropowatości
  • przy zerowej szczelinie (brak powłok)
  • dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
  • w stabilnej temperaturze pokojowej

Praktyczny udźwig: czynniki wpływające

Należy pamiętać, że trzymanie magnesu może być niższe pod wpływem następujących czynników, zaczynając od najistotniejszych:
  • Odstęp (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
  • Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
  • Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
  • Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
  • Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).

Udźwig określano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.

Ostrzeżenia
Ryzyko zmiażdżenia

Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!

Obróbka mechaniczna

Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.

Uwaga medyczna

Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.

Elektronika precyzyjna

Pamiętaj: magnesy neodymowe generują pole, które mylą systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.

Ochrona urządzeń

Unikaj zbliżania magnesów do dokumentów, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.

Alergia na nikiel

Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.

Zagrożenie dla najmłodszych

Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.

Przegrzanie magnesu

Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.

Rozprysk materiału

Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.

Świadome użytkowanie

Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.

Uwaga! Szczegółowe omówienie o ryzyku w artykule: Niebezpieczeństwo pracy z magnesem.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98