MPL 6x6x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020175
GTIN/EAN: 5906301811817
Długość
6 mm [±0,1 mm]
Szerokość
6 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
1.62 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.38 kg / 13.54 N
Indukcja magnetyczna
539.50 mT / 5395 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie pisz przez
formularz
na naszej stronie.
Parametry i budowę magnesów wyliczysz u nas w
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne - MPL 6x6x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 6x6x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020175 |
| GTIN/EAN | 5906301811817 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 6 mm [±0,1 mm] |
| Szerokość | 6 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 1.62 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.38 kg / 13.54 N |
| Indukcja magnetyczna ~ ? | 539.50 mT / 5395 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Poniższe dane są rezultat symulacji matematycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 6x6x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5389 Gs
538.9 mT
|
1.38 kg / 1380.0 g
13.5 N
|
słaby uchwyt |
| 1 mm |
3805 Gs
380.5 mT
|
0.69 kg / 688.0 g
6.7 N
|
słaby uchwyt |
| 2 mm |
2530 Gs
253.0 mT
|
0.30 kg / 304.3 g
3.0 N
|
słaby uchwyt |
| 3 mm |
1671 Gs
167.1 mT
|
0.13 kg / 132.7 g
1.3 N
|
słaby uchwyt |
| 5 mm |
784 Gs
78.4 mT
|
0.03 kg / 29.2 g
0.3 N
|
słaby uchwyt |
| 10 mm |
192 Gs
19.2 mT
|
0.00 kg / 1.8 g
0.0 N
|
słaby uchwyt |
| 15 mm |
73 Gs
7.3 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 20 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 6x6x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.28 kg / 276.0 g
2.7 N
|
| 1 mm | Stal (~0.2) |
0.14 kg / 138.0 g
1.4 N
|
| 2 mm | Stal (~0.2) |
0.06 kg / 60.0 g
0.6 N
|
| 3 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 6x6x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.41 kg / 414.0 g
4.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.28 kg / 276.0 g
2.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 138.0 g
1.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.69 kg / 690.0 g
6.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 6x6x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 138.0 g
1.4 N
|
| 1 mm |
|
0.35 kg / 345.0 g
3.4 N
|
| 2 mm |
|
0.69 kg / 690.0 g
6.8 N
|
| 5 mm |
|
1.38 kg / 1380.0 g
13.5 N
|
| 10 mm |
|
1.38 kg / 1380.0 g
13.5 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 6x6x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.38 kg / 1380.0 g
13.5 N
|
OK |
| 40 °C | -2.2% |
1.35 kg / 1349.6 g
13.2 N
|
OK |
| 60 °C | -4.4% |
1.32 kg / 1319.3 g
12.9 N
|
OK |
| 80 °C | -6.6% |
1.29 kg / 1288.9 g
12.6 N
|
|
| 100 °C | -28.8% |
0.98 kg / 982.6 g
9.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 6x6x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
6.44 kg / 6445 g
63.2 N
5 949 Gs
|
N/A |
| 1 mm |
4.66 kg / 4663 g
45.7 N
9 167 Gs
|
4.20 kg / 4196 g
41.2 N
~0 Gs
|
| 2 mm |
3.21 kg / 3213 g
31.5 N
7 610 Gs
|
2.89 kg / 2892 g
28.4 N
~0 Gs
|
| 3 mm |
2.15 kg / 2152 g
21.1 N
6 228 Gs
|
1.94 kg / 1937 g
19.0 N
~0 Gs
|
| 5 mm |
0.94 kg / 936 g
9.2 N
4 107 Gs
|
0.84 kg / 842 g
8.3 N
~0 Gs
|
| 10 mm |
0.14 kg / 136 g
1.3 N
1 568 Gs
|
0.12 kg / 123 g
1.2 N
~0 Gs
|
| 20 mm |
0.01 kg / 8 g
0.1 N
384 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
39 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 6x6x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 6x6x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.46 km/h
(8.18 m/s)
|
0.05 J | |
| 30 mm |
50.98 km/h
(14.16 m/s)
|
0.16 J | |
| 50 mm |
65.82 km/h
(18.28 m/s)
|
0.27 J | |
| 100 mm |
93.08 km/h
(25.86 m/s)
|
0.54 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 6x6x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 6x6x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 982 Mx | 19.8 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MPL 6x6x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.38 kg | Standard |
| Woda (dno rzeki) |
1.58 kg
(+0.20 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po 10 lat spadek siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem podłoża ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się gładkością
- przy bezpośrednim styku (bez powłok)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Dystans – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość blachy – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje siłę trzymania.
Zasady BHP dla użytkowników magnesów
Rozruszniki serca
Pacjenci z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Nie zbliżaj do komputera
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Łatwopalność
Proszek powstający podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Temperatura pracy
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
Ochrona oczu
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Uszkodzenia czujników
Silne pole magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Alergia na nikiel
Pewna grupa użytkowników ma uczulenie na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może powodować zaczerwienienie skóry. Rekomendujemy używanie rękawic bezlateksowych.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Ryzyko złamań
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
