MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020159
GTIN/EAN: 5906301811657
Długość
40 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
24 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.52 kg / 73.80 N
Indukcja magnetyczna
168.28 mT / 1683 Gs
Powłoka
[NiCuNi] nikiel
17.96 ZŁ z VAT / szt. + cena za transport
14.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie zostaw wiadomość przez
nasz formularz online
na naszej stronie.
Udźwig a także wygląd magnesów przetestujesz u nas w
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020159 |
| GTIN/EAN | 5906301811657 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 24 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.52 kg / 73.80 N |
| Indukcja magnetyczna ~ ? | 168.28 mT / 1683 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Przedstawione wartości są bezpośredni efekt analizy inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MPL 40x20x4x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1683 Gs
168.3 mT
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
uwaga |
| 1 mm |
1613 Gs
161.3 mT
|
6.91 kg / 15.24 lbs
6913.8 g / 67.8 N
|
uwaga |
| 2 mm |
1524 Gs
152.4 mT
|
6.17 kg / 13.61 lbs
6172.9 g / 60.6 N
|
uwaga |
| 3 mm |
1423 Gs
142.3 mT
|
5.38 kg / 11.86 lbs
5379.4 g / 52.8 N
|
uwaga |
| 5 mm |
1207 Gs
120.7 mT
|
3.87 kg / 8.53 lbs
3869.8 g / 38.0 N
|
uwaga |
| 10 mm |
744 Gs
74.4 mT
|
1.47 kg / 3.24 lbs
1469.3 g / 14.4 N
|
bezpieczny |
| 15 mm |
455 Gs
45.5 mT
|
0.55 kg / 1.21 lbs
550.7 g / 5.4 N
|
bezpieczny |
| 20 mm |
288 Gs
28.8 mT
|
0.22 kg / 0.49 lbs
220.3 g / 2.2 N
|
bezpieczny |
| 30 mm |
129 Gs
12.9 mT
|
0.04 kg / 0.10 lbs
44.4 g / 0.4 N
|
bezpieczny |
| 50 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.01 lbs
3.8 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 40x20x4x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.50 kg / 3.32 lbs
1504.0 g / 14.8 N
|
| 1 mm | Stal (~0.2) |
1.38 kg / 3.05 lbs
1382.0 g / 13.6 N
|
| 2 mm | Stal (~0.2) |
1.23 kg / 2.72 lbs
1234.0 g / 12.1 N
|
| 3 mm | Stal (~0.2) |
1.08 kg / 2.37 lbs
1076.0 g / 10.6 N
|
| 5 mm | Stal (~0.2) |
0.77 kg / 1.71 lbs
774.0 g / 7.6 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 0.65 lbs
294.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 40x20x4x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.26 kg / 4.97 lbs
2256.0 g / 22.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.50 kg / 3.32 lbs
1504.0 g / 14.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.75 kg / 1.66 lbs
752.0 g / 7.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.76 kg / 8.29 lbs
3760.0 g / 36.9 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 40x20x4x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.75 kg / 1.66 lbs
752.0 g / 7.4 N
|
| 1 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 2 mm |
|
3.76 kg / 8.29 lbs
3760.0 g / 36.9 N
|
| 3 mm |
|
5.64 kg / 12.43 lbs
5640.0 g / 55.3 N
|
| 5 mm |
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
| 10 mm |
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
| 11 mm |
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
| 12 mm |
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 40x20x4x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
OK |
| 40 °C | -2.2% |
7.35 kg / 16.21 lbs
7354.6 g / 72.1 N
|
OK |
| 60 °C | -4.4% |
7.19 kg / 15.85 lbs
7189.1 g / 70.5 N
|
|
| 80 °C | -6.6% |
7.02 kg / 15.48 lbs
7023.7 g / 68.9 N
|
|
| 100 °C | -28.8% |
5.35 kg / 11.80 lbs
5354.2 g / 52.5 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 40x20x4x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.96 kg / 30.78 lbs
2 997 Gs
|
2.09 kg / 4.62 lbs
2094 g / 20.5 N
|
N/A |
| 1 mm |
13.44 kg / 29.64 lbs
3 302 Gs
|
2.02 kg / 4.45 lbs
2017 g / 19.8 N
|
12.10 kg / 26.68 lbs
~0 Gs
|
| 2 mm |
12.84 kg / 28.30 lbs
3 227 Gs
|
1.93 kg / 4.25 lbs
1926 g / 18.9 N
|
11.55 kg / 25.47 lbs
~0 Gs
|
| 3 mm |
12.17 kg / 26.83 lbs
3 142 Gs
|
1.83 kg / 4.02 lbs
1826 g / 17.9 N
|
10.95 kg / 24.15 lbs
~0 Gs
|
| 5 mm |
10.73 kg / 23.65 lbs
2 950 Gs
|
1.61 kg / 3.55 lbs
1609 g / 15.8 N
|
9.66 kg / 21.29 lbs
~0 Gs
|
| 10 mm |
7.19 kg / 15.84 lbs
2 414 Gs
|
1.08 kg / 2.38 lbs
1078 g / 10.6 N
|
6.47 kg / 14.26 lbs
~0 Gs
|
| 20 mm |
2.73 kg / 6.01 lbs
1 487 Gs
|
0.41 kg / 0.90 lbs
409 g / 4.0 N
|
2.46 kg / 5.41 lbs
~0 Gs
|
| 50 mm |
0.18 kg / 0.39 lbs
379 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.35 lbs
~0 Gs
|
| 60 mm |
0.08 kg / 0.18 lbs
259 Gs
|
0.01 kg / 0.03 lbs
12 g / 0.1 N
|
0.07 kg / 0.16 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.09 lbs
183 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
133 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
99 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
76 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 40x20x4x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 40x20x4x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.91 km/h
(5.53 m/s)
|
0.37 J | |
| 30 mm |
31.03 km/h
(8.62 m/s)
|
0.89 J | |
| 50 mm |
39.93 km/h
(11.09 m/s)
|
1.48 J | |
| 100 mm |
56.45 km/h
(15.68 m/s)
|
2.95 J |
Tabela 9: Odporność na korozję
MPL 40x20x4x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 40x20x4x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 15 299 Mx | 153.0 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 40x20x4x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.52 kg | Standard |
| Woda (dno rzeki) |
8.61 kg
(+1.09 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady spadek mocy wynosi tylko ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i sprzętu medycznego.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co się na to składa?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o grubości nie mniejszej niż 10 mm
- z powierzchnią idealnie równą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Odstęp (pomiędzy magnesem a metalem), bowiem nawet bardzo mała przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Czynnik termiczny – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Interferencja medyczna
Osoby z kardiowerterem muszą utrzymać duży odstęp od magnesów. Silny magnes może zatrzymać działanie implantu.
Tylko dla dorosłych
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem dzieci i zwierząt.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Uczulenie na powłokę
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Zagrożenie dla elektroniki
Bardzo silne pole magnetyczne może usunąć informacje na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe działają z daleka i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Łamliwość magnesów
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Poważne obrażenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
