MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020159
GTIN/EAN: 5906301811657
Długość
40 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
24 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.52 kg / 73.80 N
Indukcja magnetyczna
168.28 mT / 1683 Gs
Powłoka
[NiCuNi] nikiel
17.96 ZŁ z VAT / szt. + cena za transport
14.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
lub daj znać poprzez
formularz zgłoszeniowy
na stronie kontaktowej.
Siłę a także budowę magnesu neodymowego przetestujesz w naszym
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020159 |
| GTIN/EAN | 5906301811657 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 24 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.52 kg / 73.80 N |
| Indukcja magnetyczna ~ ? | 168.28 mT / 1683 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Poniższe informacje są wynik symulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MPL 40x20x4x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1683 Gs
168.3 mT
|
7.52 kg / 7520.0 g
73.8 N
|
mocny |
| 1 mm |
1613 Gs
161.3 mT
|
6.91 kg / 6913.8 g
67.8 N
|
mocny |
| 2 mm |
1524 Gs
152.4 mT
|
6.17 kg / 6172.9 g
60.6 N
|
mocny |
| 3 mm |
1423 Gs
142.3 mT
|
5.38 kg / 5379.4 g
52.8 N
|
mocny |
| 5 mm |
1207 Gs
120.7 mT
|
3.87 kg / 3869.8 g
38.0 N
|
mocny |
| 10 mm |
744 Gs
74.4 mT
|
1.47 kg / 1469.3 g
14.4 N
|
bezpieczny |
| 15 mm |
455 Gs
45.5 mT
|
0.55 kg / 550.7 g
5.4 N
|
bezpieczny |
| 20 mm |
288 Gs
28.8 mT
|
0.22 kg / 220.3 g
2.2 N
|
bezpieczny |
| 30 mm |
129 Gs
12.9 mT
|
0.04 kg / 44.4 g
0.4 N
|
bezpieczny |
| 50 mm |
38 Gs
3.8 mT
|
0.00 kg / 3.8 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 40x20x4x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.50 kg / 1504.0 g
14.8 N
|
| 1 mm | Stal (~0.2) |
1.38 kg / 1382.0 g
13.6 N
|
| 2 mm | Stal (~0.2) |
1.23 kg / 1234.0 g
12.1 N
|
| 3 mm | Stal (~0.2) |
1.08 kg / 1076.0 g
10.6 N
|
| 5 mm | Stal (~0.2) |
0.77 kg / 774.0 g
7.6 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 294.0 g
2.9 N
|
| 15 mm | Stal (~0.2) |
0.11 kg / 110.0 g
1.1 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 40x20x4x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.26 kg / 2256.0 g
22.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.50 kg / 1504.0 g
14.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.75 kg / 752.0 g
7.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.76 kg / 3760.0 g
36.9 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 40x20x4x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.75 kg / 752.0 g
7.4 N
|
| 1 mm |
|
1.88 kg / 1880.0 g
18.4 N
|
| 2 mm |
|
3.76 kg / 3760.0 g
36.9 N
|
| 5 mm |
|
7.52 kg / 7520.0 g
73.8 N
|
| 10 mm |
|
7.52 kg / 7520.0 g
73.8 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 40x20x4x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.52 kg / 7520.0 g
73.8 N
|
OK |
| 40 °C | -2.2% |
7.35 kg / 7354.6 g
72.1 N
|
OK |
| 60 °C | -4.4% |
7.19 kg / 7189.1 g
70.5 N
|
|
| 80 °C | -6.6% |
7.02 kg / 7023.7 g
68.9 N
|
|
| 100 °C | -28.8% |
5.35 kg / 5354.2 g
52.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 40x20x4x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
13.96 kg / 13963 g
137.0 N
2 997 Gs
|
N/A |
| 1 mm |
13.44 kg / 13444 g
131.9 N
3 302 Gs
|
12.10 kg / 12100 g
118.7 N
~0 Gs
|
| 2 mm |
12.84 kg / 12837 g
125.9 N
3 227 Gs
|
11.55 kg / 11554 g
113.3 N
~0 Gs
|
| 3 mm |
12.17 kg / 12170 g
119.4 N
3 142 Gs
|
10.95 kg / 10953 g
107.5 N
~0 Gs
|
| 5 mm |
10.73 kg / 10729 g
105.3 N
2 950 Gs
|
9.66 kg / 9656 g
94.7 N
~0 Gs
|
| 10 mm |
7.19 kg / 7185 g
70.5 N
2 414 Gs
|
6.47 kg / 6467 g
63.4 N
~0 Gs
|
| 20 mm |
2.73 kg / 2728 g
26.8 N
1 487 Gs
|
2.46 kg / 2455 g
24.1 N
~0 Gs
|
| 50 mm |
0.18 kg / 177 g
1.7 N
379 Gs
|
0.16 kg / 159 g
1.6 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 40x20x4x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 40x20x4x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.91 km/h
(5.53 m/s)
|
0.37 J | |
| 30 mm |
31.03 km/h
(8.62 m/s)
|
0.89 J | |
| 50 mm |
39.93 km/h
(11.09 m/s)
|
1.48 J | |
| 100 mm |
56.45 km/h
(15.68 m/s)
|
2.95 J |
Tabela 9: Odporność na korozję
MPL 40x20x4x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 40x20x4x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 15 299 Mx | 153.0 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 40x20x4x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.52 kg | Standard |
| Woda (dno rzeki) |
8.61 kg
(+1.09 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Ograniczenia
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- o szlifowanej powierzchni kontaktu
- przy bezpośrednim styku (brak zanieczyszczeń)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Ryzyko pożaru
Pył powstający podczas obróbki magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
To nie jest zabawka
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Ryzyko zmiażdżenia
Duże magnesy mogą połamać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Łamliwość magnesów
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Ryzyko uczulenia
Niektóre osoby posiada uczulenie na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może skutkować wysypkę. Rekomendujemy używanie rękawiczek ochronnych.
Nie przegrzewaj magnesów
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Urządzenia elektroniczne
Bardzo silne pole magnetyczne może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Ostrożność wymagana
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
