MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020159
GTIN/EAN: 5906301811657
Długość
40 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
24 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.52 kg / 73.80 N
Indukcja magnetyczna
168.28 mT / 1683 Gs
Powłoka
[NiCuNi] nikiel
17.96 ZŁ z VAT / szt. + cena za transport
14.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie zostaw wiadomość przez
formularz zgłoszeniowy
na stronie kontakt.
Właściwości a także formę magnesu sprawdzisz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna - MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x20x4x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020159 |
| GTIN/EAN | 5906301811657 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 24 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.52 kg / 73.80 N |
| Indukcja magnetyczna ~ ? | 168.28 mT / 1683 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Przedstawione wartości stanowią wynik analizy fizycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 40x20x4x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1683 Gs
168.3 mT
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
mocny |
| 1 mm |
1613 Gs
161.3 mT
|
6.91 kg / 15.24 lbs
6913.8 g / 67.8 N
|
mocny |
| 2 mm |
1524 Gs
152.4 mT
|
6.17 kg / 13.61 lbs
6172.9 g / 60.6 N
|
mocny |
| 3 mm |
1423 Gs
142.3 mT
|
5.38 kg / 11.86 lbs
5379.4 g / 52.8 N
|
mocny |
| 5 mm |
1207 Gs
120.7 mT
|
3.87 kg / 8.53 lbs
3869.8 g / 38.0 N
|
mocny |
| 10 mm |
744 Gs
74.4 mT
|
1.47 kg / 3.24 lbs
1469.3 g / 14.4 N
|
słaby uchwyt |
| 15 mm |
455 Gs
45.5 mT
|
0.55 kg / 1.21 lbs
550.7 g / 5.4 N
|
słaby uchwyt |
| 20 mm |
288 Gs
28.8 mT
|
0.22 kg / 0.49 lbs
220.3 g / 2.2 N
|
słaby uchwyt |
| 30 mm |
129 Gs
12.9 mT
|
0.04 kg / 0.10 lbs
44.4 g / 0.4 N
|
słaby uchwyt |
| 50 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.01 lbs
3.8 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 40x20x4x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.50 kg / 3.32 lbs
1504.0 g / 14.8 N
|
| 1 mm | Stal (~0.2) |
1.38 kg / 3.05 lbs
1382.0 g / 13.6 N
|
| 2 mm | Stal (~0.2) |
1.23 kg / 2.72 lbs
1234.0 g / 12.1 N
|
| 3 mm | Stal (~0.2) |
1.08 kg / 2.37 lbs
1076.0 g / 10.6 N
|
| 5 mm | Stal (~0.2) |
0.77 kg / 1.71 lbs
774.0 g / 7.6 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 0.65 lbs
294.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 40x20x4x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.26 kg / 4.97 lbs
2256.0 g / 22.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.50 kg / 3.32 lbs
1504.0 g / 14.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.75 kg / 1.66 lbs
752.0 g / 7.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.76 kg / 8.29 lbs
3760.0 g / 36.9 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 40x20x4x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.75 kg / 1.66 lbs
752.0 g / 7.4 N
|
| 1 mm |
|
1.88 kg / 4.14 lbs
1880.0 g / 18.4 N
|
| 2 mm |
|
3.76 kg / 8.29 lbs
3760.0 g / 36.9 N
|
| 3 mm |
|
5.64 kg / 12.43 lbs
5640.0 g / 55.3 N
|
| 5 mm |
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
| 10 mm |
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
| 11 mm |
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
| 12 mm |
|
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MPL 40x20x4x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.52 kg / 16.58 lbs
7520.0 g / 73.8 N
|
OK |
| 40 °C | -2.2% |
7.35 kg / 16.21 lbs
7354.6 g / 72.1 N
|
OK |
| 60 °C | -4.4% |
7.19 kg / 15.85 lbs
7189.1 g / 70.5 N
|
|
| 80 °C | -6.6% |
7.02 kg / 15.48 lbs
7023.7 g / 68.9 N
|
|
| 100 °C | -28.8% |
5.35 kg / 11.80 lbs
5354.2 g / 52.5 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 40x20x4x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.96 kg / 30.78 lbs
2 997 Gs
|
2.09 kg / 4.62 lbs
2094 g / 20.5 N
|
N/A |
| 1 mm |
13.44 kg / 29.64 lbs
3 302 Gs
|
2.02 kg / 4.45 lbs
2017 g / 19.8 N
|
12.10 kg / 26.68 lbs
~0 Gs
|
| 2 mm |
12.84 kg / 28.30 lbs
3 227 Gs
|
1.93 kg / 4.25 lbs
1926 g / 18.9 N
|
11.55 kg / 25.47 lbs
~0 Gs
|
| 3 mm |
12.17 kg / 26.83 lbs
3 142 Gs
|
1.83 kg / 4.02 lbs
1826 g / 17.9 N
|
10.95 kg / 24.15 lbs
~0 Gs
|
| 5 mm |
10.73 kg / 23.65 lbs
2 950 Gs
|
1.61 kg / 3.55 lbs
1609 g / 15.8 N
|
9.66 kg / 21.29 lbs
~0 Gs
|
| 10 mm |
7.19 kg / 15.84 lbs
2 414 Gs
|
1.08 kg / 2.38 lbs
1078 g / 10.6 N
|
6.47 kg / 14.26 lbs
~0 Gs
|
| 20 mm |
2.73 kg / 6.01 lbs
1 487 Gs
|
0.41 kg / 0.90 lbs
409 g / 4.0 N
|
2.46 kg / 5.41 lbs
~0 Gs
|
| 50 mm |
0.18 kg / 0.39 lbs
379 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.35 lbs
~0 Gs
|
| 60 mm |
0.08 kg / 0.18 lbs
259 Gs
|
0.01 kg / 0.03 lbs
12 g / 0.1 N
|
0.07 kg / 0.16 lbs
~0 Gs
|
| 70 mm |
0.04 kg / 0.09 lbs
183 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
133 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
99 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
76 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 40x20x4x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 40x20x4x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.91 km/h
(5.53 m/s)
|
0.37 J | |
| 30 mm |
31.03 km/h
(8.62 m/s)
|
0.89 J | |
| 50 mm |
39.93 km/h
(11.09 m/s)
|
1.48 J | |
| 100 mm |
56.45 km/h
(15.68 m/s)
|
2.95 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x20x4x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 40x20x4x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 15 299 Mx | 153.0 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x20x4x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.52 kg | Standard |
| Woda (dno rzeki) |
8.61 kg
(+1.09 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- z wykorzystaniem podłoża ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans – występowanie ciała obcego (rdza, brud, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
BHP przy magnesach
Samozapłon
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Produkt nie dla dzieci
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Kruchość materiału
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Nie lekceważ mocy
Stosuj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Utrata mocy w cieple
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Kompas i GPS
Uwaga: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Ostrzeżenie dla alergików
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Niebezpieczeństwo dla rozruszników
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
