MPL 40x10x18 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020149
GTIN/EAN: 5906301811558
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
→ diametralny
Udźwig
16.72 kg / 164.01 N
Indukcja magnetyczna
540.48 mT / 5405 Gs
Powłoka
[NiCuNi] nikiel
18.45 ZŁ z VAT / szt. + cena za transport
15.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie zostaw wiadomość poprzez
formularz zapytania
przez naszą stronę.
Moc oraz wygląd magnesu neodymowego przetestujesz w naszym
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MPL 40x10x18 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 40x10x18 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020149 |
| GTIN/EAN | 5906301811558 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 16.72 kg / 164.01 N |
| Indukcja magnetyczna ~ ? | 540.48 mT / 5405 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu - raport
Poniższe dane są rezultat symulacji fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MPL 40x10x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5402 Gs
540.2 mT
|
16.72 kg / 16720.0 g
164.0 N
|
miażdżący |
| 1 mm |
4664 Gs
466.4 mT
|
12.46 kg / 12464.6 g
122.3 N
|
miażdżący |
| 2 mm |
3970 Gs
397.0 mT
|
9.03 kg / 9028.7 g
88.6 N
|
średnie ryzyko |
| 3 mm |
3362 Gs
336.2 mT
|
6.48 kg / 6476.4 g
63.5 N
|
średnie ryzyko |
| 5 mm |
2432 Gs
243.2 mT
|
3.39 kg / 3388.5 g
33.2 N
|
średnie ryzyko |
| 10 mm |
1220 Gs
122.0 mT
|
0.85 kg / 853.2 g
8.4 N
|
niskie ryzyko |
| 15 mm |
703 Gs
70.3 mT
|
0.28 kg / 282.9 g
2.8 N
|
niskie ryzyko |
| 20 mm |
440 Gs
44.0 mT
|
0.11 kg / 111.1 g
1.1 N
|
niskie ryzyko |
| 30 mm |
203 Gs
20.3 mT
|
0.02 kg / 23.6 g
0.2 N
|
niskie ryzyko |
| 50 mm |
64 Gs
6.4 mT
|
0.00 kg / 2.4 g
0.0 N
|
niskie ryzyko |
MPL 40x10x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.34 kg / 3344.0 g
32.8 N
|
| 1 mm | Stal (~0.2) |
2.49 kg / 2492.0 g
24.4 N
|
| 2 mm | Stal (~0.2) |
1.81 kg / 1806.0 g
17.7 N
|
| 3 mm | Stal (~0.2) |
1.30 kg / 1296.0 g
12.7 N
|
| 5 mm | Stal (~0.2) |
0.68 kg / 678.0 g
6.7 N
|
| 10 mm | Stal (~0.2) |
0.17 kg / 170.0 g
1.7 N
|
| 15 mm | Stal (~0.2) |
0.06 kg / 56.0 g
0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 40x10x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.02 kg / 5016.0 g
49.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.34 kg / 3344.0 g
32.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.67 kg / 1672.0 g
16.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.36 kg / 8360.0 g
82.0 N
|
MPL 40x10x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.84 kg / 836.0 g
8.2 N
|
| 1 mm |
|
2.09 kg / 2090.0 g
20.5 N
|
| 2 mm |
|
4.18 kg / 4180.0 g
41.0 N
|
| 5 mm |
|
10.45 kg / 10450.0 g
102.5 N
|
| 10 mm |
|
16.72 kg / 16720.0 g
164.0 N
|
MPL 40x10x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
16.72 kg / 16720.0 g
164.0 N
|
OK |
| 40 °C | -2.2% |
16.35 kg / 16352.2 g
160.4 N
|
OK |
| 60 °C | -4.4% |
15.98 kg / 15984.3 g
156.8 N
|
OK |
| 80 °C | -6.6% |
15.62 kg / 15616.5 g
153.2 N
|
|
| 100 °C | -28.8% |
11.90 kg / 11904.6 g
116.8 N
|
MPL 40x10x18 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
71.96 kg / 71962 g
705.9 N
5 928 Gs
|
N/A |
| 1 mm |
62.49 kg / 62486 g
613.0 N
10 068 Gs
|
56.24 kg / 56237 g
551.7 N
~0 Gs
|
| 2 mm |
53.65 kg / 53647 g
526.3 N
9 328 Gs
|
48.28 kg / 48282 g
473.6 N
~0 Gs
|
| 3 mm |
45.76 kg / 45759 g
448.9 N
8 615 Gs
|
41.18 kg / 41183 g
404.0 N
~0 Gs
|
| 5 mm |
32.92 kg / 32921 g
323.0 N
7 308 Gs
|
29.63 kg / 29629 g
290.7 N
~0 Gs
|
| 10 mm |
14.58 kg / 14584 g
143.1 N
4 864 Gs
|
13.13 kg / 13125 g
128.8 N
~0 Gs
|
| 20 mm |
3.67 kg / 3672 g
36.0 N
2 441 Gs
|
3.30 kg / 3305 g
32.4 N
~0 Gs
|
| 50 mm |
0.21 kg / 211 g
2.1 N
585 Gs
|
0.19 kg / 190 g
1.9 N
~0 Gs
|
MPL 40x10x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 8.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MPL 40x10x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.30 km/h
(5.08 m/s)
|
0.70 J | |
| 30 mm |
30.76 km/h
(8.55 m/s)
|
1.97 J | |
| 50 mm |
39.69 km/h
(11.02 m/s)
|
3.28 J | |
| 100 mm |
56.12 km/h
(15.59 m/s)
|
6.56 J |
MPL 40x10x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 40x10x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 21 285 Mx | 212.9 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
MPL 40x10x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 16.72 kg | Standard |
| Woda (dno rzeki) |
19.14 kg
(+2.42 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (wg danych).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) mają estetyczny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Najwyższa nośność magnesu – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią oczyszczoną i gładką
- przy całkowitym braku odstępu (bez farby)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w neutralnych warunkach termicznych
Co wpływa na udźwig w praktyce
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają przenikalność magnetyczną i siłę trzymania.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig określano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Łamliwość magnesów
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Temperatura pracy
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Chronić przed dziećmi
Silne magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Kompas i GPS
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Nie lekceważ mocy
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Niebezpieczeństwo przytrzaśnięcia
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
