MPL 40x10x18 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020149
GTIN/EAN: 5906301811558
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
→ diametralny
Udźwig
16.72 kg / 164.01 N
Indukcja magnetyczna
540.48 mT / 5405 Gs
Powłoka
[NiCuNi] nikiel
18.45 ZŁ z VAT / szt. + cena za transport
15.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo pisz przez
formularz zapytania
na naszej stronie.
Siłę oraz kształt magnesu przetestujesz u nas w
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane techniczne - MPL 40x10x18 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x10x18 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020149 |
| GTIN/EAN | 5906301811558 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 16.72 kg / 164.01 N |
| Indukcja magnetyczna ~ ? | 540.48 mT / 5405 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Niniejsze dane stanowią wynik symulacji matematycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 40x10x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5402 Gs
540.2 mT
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
miażdżący |
| 1 mm |
4664 Gs
466.4 mT
|
12.46 kg / 27.48 lbs
12464.6 g / 122.3 N
|
miażdżący |
| 2 mm |
3970 Gs
397.0 mT
|
9.03 kg / 19.90 lbs
9028.7 g / 88.6 N
|
uwaga |
| 3 mm |
3362 Gs
336.2 mT
|
6.48 kg / 14.28 lbs
6476.4 g / 63.5 N
|
uwaga |
| 5 mm |
2432 Gs
243.2 mT
|
3.39 kg / 7.47 lbs
3388.5 g / 33.2 N
|
uwaga |
| 10 mm |
1220 Gs
122.0 mT
|
0.85 kg / 1.88 lbs
853.2 g / 8.4 N
|
bezpieczny |
| 15 mm |
703 Gs
70.3 mT
|
0.28 kg / 0.62 lbs
282.9 g / 2.8 N
|
bezpieczny |
| 20 mm |
440 Gs
44.0 mT
|
0.11 kg / 0.24 lbs
111.1 g / 1.1 N
|
bezpieczny |
| 30 mm |
203 Gs
20.3 mT
|
0.02 kg / 0.05 lbs
23.6 g / 0.2 N
|
bezpieczny |
| 50 mm |
64 Gs
6.4 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 40x10x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.34 kg / 7.37 lbs
3344.0 g / 32.8 N
|
| 1 mm | Stal (~0.2) |
2.49 kg / 5.49 lbs
2492.0 g / 24.4 N
|
| 2 mm | Stal (~0.2) |
1.81 kg / 3.98 lbs
1806.0 g / 17.7 N
|
| 3 mm | Stal (~0.2) |
1.30 kg / 2.86 lbs
1296.0 g / 12.7 N
|
| 5 mm | Stal (~0.2) |
0.68 kg / 1.49 lbs
678.0 g / 6.7 N
|
| 10 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| 15 mm | Stal (~0.2) |
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 40x10x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.02 kg / 11.06 lbs
5016.0 g / 49.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.34 kg / 7.37 lbs
3344.0 g / 32.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.67 kg / 3.69 lbs
1672.0 g / 16.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.36 kg / 18.43 lbs
8360.0 g / 82.0 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 40x10x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.84 kg / 1.84 lbs
836.0 g / 8.2 N
|
| 1 mm |
|
2.09 kg / 4.61 lbs
2090.0 g / 20.5 N
|
| 2 mm |
|
4.18 kg / 9.22 lbs
4180.0 g / 41.0 N
|
| 3 mm |
|
6.27 kg / 13.82 lbs
6270.0 g / 61.5 N
|
| 5 mm |
|
10.45 kg / 23.04 lbs
10450.0 g / 102.5 N
|
| 10 mm |
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
| 11 mm |
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
| 12 mm |
|
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 40x10x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
16.72 kg / 36.86 lbs
16720.0 g / 164.0 N
|
OK |
| 40 °C | -2.2% |
16.35 kg / 36.05 lbs
16352.2 g / 160.4 N
|
OK |
| 60 °C | -4.4% |
15.98 kg / 35.24 lbs
15984.3 g / 156.8 N
|
OK |
| 80 °C | -6.6% |
15.62 kg / 34.43 lbs
15616.5 g / 153.2 N
|
|
| 100 °C | -28.8% |
11.90 kg / 26.25 lbs
11904.6 g / 116.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 40x10x18 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
71.96 kg / 158.65 lbs
5 928 Gs
|
10.79 kg / 23.80 lbs
10794 g / 105.9 N
|
N/A |
| 1 mm |
62.49 kg / 137.76 lbs
10 068 Gs
|
9.37 kg / 20.66 lbs
9373 g / 91.9 N
|
56.24 kg / 123.98 lbs
~0 Gs
|
| 2 mm |
53.65 kg / 118.27 lbs
9 328 Gs
|
8.05 kg / 17.74 lbs
8047 g / 78.9 N
|
48.28 kg / 106.44 lbs
~0 Gs
|
| 3 mm |
45.76 kg / 100.88 lbs
8 615 Gs
|
6.86 kg / 15.13 lbs
6864 g / 67.3 N
|
41.18 kg / 90.79 lbs
~0 Gs
|
| 5 mm |
32.92 kg / 72.58 lbs
7 308 Gs
|
4.94 kg / 10.89 lbs
4938 g / 48.4 N
|
29.63 kg / 65.32 lbs
~0 Gs
|
| 10 mm |
14.58 kg / 32.15 lbs
4 864 Gs
|
2.19 kg / 4.82 lbs
2188 g / 21.5 N
|
13.13 kg / 28.94 lbs
~0 Gs
|
| 20 mm |
3.67 kg / 8.10 lbs
2 441 Gs
|
0.55 kg / 1.21 lbs
551 g / 5.4 N
|
3.30 kg / 7.29 lbs
~0 Gs
|
| 50 mm |
0.21 kg / 0.46 lbs
585 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 60 mm |
0.10 kg / 0.22 lbs
406 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.12 lbs
293 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.10 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.06 lbs
217 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
165 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
128 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 40x10x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 40x10x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.30 km/h
(5.08 m/s)
|
0.70 J | |
| 30 mm |
30.76 km/h
(8.55 m/s)
|
1.97 J | |
| 50 mm |
39.69 km/h
(11.02 m/s)
|
3.28 J | |
| 100 mm |
56.12 km/h
(15.59 m/s)
|
6.56 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x10x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 40x10x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 21 285 Mx | 212.9 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 40x10x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 16.72 kg | Standard |
| Woda (dno rzeki) |
19.14 kg
(+2.42 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat spadek siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- przy bezpośrednim styku (brak powłok)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje siłę trzymania.
Zasady BHP dla użytkowników magnesów
Zagrożenie dla najmłodszych
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Interferencja medyczna
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Siła neodymu
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Reakcje alergiczne
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Ochrona dłoni
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Wrażliwość na ciepło
Typowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Kruchy spiek
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Smartfony i tablety
Ważna informacja: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
