MPL 40x10x18 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020149
GTIN/EAN: 5906301811558
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
→ diametralny
Udźwig
16.72 kg / 164.01 N
Indukcja magnetyczna
540.48 mT / 5405 Gs
Powłoka
[NiCuNi] nikiel
18.45 ZŁ z VAT / szt. + cena za transport
15.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie daj znać korzystając z
formularz kontaktowy
na naszej stronie.
Właściwości i wygląd elementów magnetycznych testujesz w naszym
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry produktu - MPL 40x10x18 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x10x18 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020149 |
| GTIN/EAN | 5906301811558 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 16.72 kg / 164.01 N |
| Indukcja magnetyczna ~ ? | 540.48 mT / 5405 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Niniejsze dane są wynik symulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MPL 40x10x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5402 Gs
540.2 mT
|
16.72 kg / 16720.0 g
164.0 N
|
krytyczny poziom |
| 1 mm |
4664 Gs
466.4 mT
|
12.46 kg / 12464.6 g
122.3 N
|
krytyczny poziom |
| 2 mm |
3970 Gs
397.0 mT
|
9.03 kg / 9028.7 g
88.6 N
|
średnie ryzyko |
| 3 mm |
3362 Gs
336.2 mT
|
6.48 kg / 6476.4 g
63.5 N
|
średnie ryzyko |
| 5 mm |
2432 Gs
243.2 mT
|
3.39 kg / 3388.5 g
33.2 N
|
średnie ryzyko |
| 10 mm |
1220 Gs
122.0 mT
|
0.85 kg / 853.2 g
8.4 N
|
słaby uchwyt |
| 15 mm |
703 Gs
70.3 mT
|
0.28 kg / 282.9 g
2.8 N
|
słaby uchwyt |
| 20 mm |
440 Gs
44.0 mT
|
0.11 kg / 111.1 g
1.1 N
|
słaby uchwyt |
| 30 mm |
203 Gs
20.3 mT
|
0.02 kg / 23.6 g
0.2 N
|
słaby uchwyt |
| 50 mm |
64 Gs
6.4 mT
|
0.00 kg / 2.4 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 40x10x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.34 kg / 3344.0 g
32.8 N
|
| 1 mm | Stal (~0.2) |
2.49 kg / 2492.0 g
24.4 N
|
| 2 mm | Stal (~0.2) |
1.81 kg / 1806.0 g
17.7 N
|
| 3 mm | Stal (~0.2) |
1.30 kg / 1296.0 g
12.7 N
|
| 5 mm | Stal (~0.2) |
0.68 kg / 678.0 g
6.7 N
|
| 10 mm | Stal (~0.2) |
0.17 kg / 170.0 g
1.7 N
|
| 15 mm | Stal (~0.2) |
0.06 kg / 56.0 g
0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 40x10x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.02 kg / 5016.0 g
49.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.34 kg / 3344.0 g
32.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.67 kg / 1672.0 g
16.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.36 kg / 8360.0 g
82.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 40x10x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.84 kg / 836.0 g
8.2 N
|
| 1 mm |
|
2.09 kg / 2090.0 g
20.5 N
|
| 2 mm |
|
4.18 kg / 4180.0 g
41.0 N
|
| 5 mm |
|
10.45 kg / 10450.0 g
102.5 N
|
| 10 mm |
|
16.72 kg / 16720.0 g
164.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MPL 40x10x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
16.72 kg / 16720.0 g
164.0 N
|
OK |
| 40 °C | -2.2% |
16.35 kg / 16352.2 g
160.4 N
|
OK |
| 60 °C | -4.4% |
15.98 kg / 15984.3 g
156.8 N
|
OK |
| 80 °C | -6.6% |
15.62 kg / 15616.5 g
153.2 N
|
|
| 100 °C | -28.8% |
11.90 kg / 11904.6 g
116.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 40x10x18 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
71.96 kg / 71962 g
705.9 N
5 928 Gs
|
N/A |
| 1 mm |
62.49 kg / 62486 g
613.0 N
10 068 Gs
|
56.24 kg / 56237 g
551.7 N
~0 Gs
|
| 2 mm |
53.65 kg / 53647 g
526.3 N
9 328 Gs
|
48.28 kg / 48282 g
473.6 N
~0 Gs
|
| 3 mm |
45.76 kg / 45759 g
448.9 N
8 615 Gs
|
41.18 kg / 41183 g
404.0 N
~0 Gs
|
| 5 mm |
32.92 kg / 32921 g
323.0 N
7 308 Gs
|
29.63 kg / 29629 g
290.7 N
~0 Gs
|
| 10 mm |
14.58 kg / 14584 g
143.1 N
4 864 Gs
|
13.13 kg / 13125 g
128.8 N
~0 Gs
|
| 20 mm |
3.67 kg / 3672 g
36.0 N
2 441 Gs
|
3.30 kg / 3305 g
32.4 N
~0 Gs
|
| 50 mm |
0.21 kg / 211 g
2.1 N
585 Gs
|
0.19 kg / 190 g
1.9 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 40x10x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 40x10x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.30 km/h
(5.08 m/s)
|
0.70 J | |
| 30 mm |
30.76 km/h
(8.55 m/s)
|
1.97 J | |
| 50 mm |
39.69 km/h
(11.02 m/s)
|
3.28 J | |
| 100 mm |
56.12 km/h
(15.59 m/s)
|
6.56 J |
Tabela 9: Odporność na korozję
MPL 40x10x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x10x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 21 285 Mx | 212.9 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MPL 40x10x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 16.72 kg | Standard |
| Woda (dno rzeki) |
19.14 kg
(+2.42 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy użyciu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (między magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość blachy – zbyt cienka płyta nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig wyznaczano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
BHP przy magnesach
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Implanty kardiologiczne
Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Tylko dla dorosłych
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Zagrożenie dla nawigacji
Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Zagrożenie dla elektroniki
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Ryzyko pęknięcia
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Ryzyko złamań
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ryzyko uczulenia
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
