MPL 17x17x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020124
GTIN/EAN: 5906301811305
Długość
17 mm [±0,1 mm]
Szerokość
17 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.22 kg / 31.54 N
Indukcja magnetyczna
187.48 mT / 1875 Gs
Powłoka
[NiCuNi] nikiel
4.71 ZŁ z VAT / szt. + cena za transport
3.83 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie napisz korzystając z
formularz kontaktowy
w sekcji kontakt.
Masę oraz formę magnesu testujesz w naszym
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja techniczna produktu - MPL 17x17x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 17x17x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020124 |
| GTIN/EAN | 5906301811305 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 17 mm [±0,1 mm] |
| Szerokość | 17 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.22 kg / 31.54 N |
| Indukcja magnetyczna ~ ? | 187.48 mT / 1875 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Poniższe dane są bezpośredni efekt kalkulacji fizycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MPL 17x17x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1874 Gs
187.4 mT
|
3.22 kg / 3220.0 g
31.6 N
|
uwaga |
| 1 mm |
1761 Gs
176.1 mT
|
2.84 kg / 2842.9 g
27.9 N
|
uwaga |
| 2 mm |
1610 Gs
161.0 mT
|
2.38 kg / 2376.8 g
23.3 N
|
uwaga |
| 3 mm |
1440 Gs
144.0 mT
|
1.90 kg / 1901.0 g
18.6 N
|
słaby uchwyt |
| 5 mm |
1099 Gs
109.9 mT
|
1.11 kg / 1107.5 g
10.9 N
|
słaby uchwyt |
| 10 mm |
508 Gs
50.8 mT
|
0.24 kg / 236.4 g
2.3 N
|
słaby uchwyt |
| 15 mm |
245 Gs
24.5 mT
|
0.06 kg / 55.2 g
0.5 N
|
słaby uchwyt |
| 20 mm |
131 Gs
13.1 mT
|
0.02 kg / 15.7 g
0.2 N
|
słaby uchwyt |
| 30 mm |
48 Gs
4.8 mT
|
0.00 kg / 2.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 17x17x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 644.0 g
6.3 N
|
| 1 mm | Stal (~0.2) |
0.57 kg / 568.0 g
5.6 N
|
| 2 mm | Stal (~0.2) |
0.48 kg / 476.0 g
4.7 N
|
| 3 mm | Stal (~0.2) |
0.38 kg / 380.0 g
3.7 N
|
| 5 mm | Stal (~0.2) |
0.22 kg / 222.0 g
2.2 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 17x17x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.97 kg / 966.0 g
9.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 644.0 g
6.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 322.0 g
3.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.61 kg / 1610.0 g
15.8 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 17x17x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 322.0 g
3.2 N
|
| 1 mm |
|
0.81 kg / 805.0 g
7.9 N
|
| 2 mm |
|
1.61 kg / 1610.0 g
15.8 N
|
| 5 mm |
|
3.22 kg / 3220.0 g
31.6 N
|
| 10 mm |
|
3.22 kg / 3220.0 g
31.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 17x17x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.22 kg / 3220.0 g
31.6 N
|
OK |
| 40 °C | -2.2% |
3.15 kg / 3149.2 g
30.9 N
|
OK |
| 60 °C | -4.4% |
3.08 kg / 3078.3 g
30.2 N
|
|
| 80 °C | -6.6% |
3.01 kg / 3007.5 g
29.5 N
|
|
| 100 °C | -28.8% |
2.29 kg / 2292.6 g
22.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 17x17x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
6.26 kg / 6260 g
61.4 N
3 313 Gs
|
N/A |
| 1 mm |
5.93 kg / 5928 g
58.2 N
3 648 Gs
|
5.33 kg / 5335 g
52.3 N
~0 Gs
|
| 2 mm |
5.53 kg / 5527 g
54.2 N
3 523 Gs
|
4.97 kg / 4974 g
48.8 N
~0 Gs
|
| 3 mm |
5.08 kg / 5085 g
49.9 N
3 379 Gs
|
4.58 kg / 4576 g
44.9 N
~0 Gs
|
| 5 mm |
4.15 kg / 4153 g
40.7 N
3 053 Gs
|
3.74 kg / 3738 g
36.7 N
~0 Gs
|
| 10 mm |
2.15 kg / 2153 g
21.1 N
2 199 Gs
|
1.94 kg / 1938 g
19.0 N
~0 Gs
|
| 20 mm |
0.46 kg / 460 g
4.5 N
1 016 Gs
|
0.41 kg / 414 g
4.1 N
~0 Gs
|
| 50 mm |
0.01 kg / 10 g
0.1 N
153 Gs
|
0.01 kg / 9 g
0.1 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 17x17x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 17x17x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.45 km/h
(6.52 m/s)
|
0.14 J | |
| 30 mm |
38.89 km/h
(10.80 m/s)
|
0.38 J | |
| 50 mm |
50.19 km/h
(13.94 m/s)
|
0.63 J | |
| 100 mm |
70.98 km/h
(19.72 m/s)
|
1.26 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 17x17x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 17x17x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 509 Mx | 65.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 17x17x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.22 kg | Standard |
| Woda (dno rzeki) |
3.69 kg
(+0.47 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni styku
- w warunkach idealnego przylegania (metal do metalu)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Odstęp (między magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Nie przegrzewaj magnesów
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Zagrożenie dla nawigacji
Uwaga: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i nawigacji.
Uczulenie na powłokę
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zakaz zabawy
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Uszkodzenia ciała
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy wkładaj dłoni między dwa silne magnesy.
Ogromna siła
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Nośniki danych
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Kruchość materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Samozapłon
Proszek powstający podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
