MPL 15x5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020123
GTIN/EAN: 5906301811299
Długość
15 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
2.81 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.20 kg / 31.43 N
Indukcja magnetyczna
468.69 mT / 4687 Gs
Powłoka
[NiCuNi] nikiel
1.390 ZŁ z VAT / szt. + cena za transport
1.130 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
lub skontaktuj się przez
formularz zapytania
w sekcji kontakt.
Masę oraz wygląd magnesu wyliczysz dzięki naszemu
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MPL 15x5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 15x5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020123 |
| GTIN/EAN | 5906301811299 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 2.81 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.20 kg / 31.43 N |
| Indukcja magnetyczna ~ ? | 468.69 mT / 4687 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Przedstawione dane stanowią bezpośredni efekt kalkulacji fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MPL 15x5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4682 Gs
468.2 mT
|
3.20 kg / 3200.0 g
31.4 N
|
uwaga |
| 1 mm |
3410 Gs
341.0 mT
|
1.70 kg / 1697.3 g
16.7 N
|
bezpieczny |
| 2 mm |
2394 Gs
239.4 mT
|
0.84 kg / 836.5 g
8.2 N
|
bezpieczny |
| 3 mm |
1701 Gs
170.1 mT
|
0.42 kg / 422.6 g
4.1 N
|
bezpieczny |
| 5 mm |
928 Gs
92.8 mT
|
0.13 kg / 125.8 g
1.2 N
|
bezpieczny |
| 10 mm |
286 Gs
28.6 mT
|
0.01 kg / 11.9 g
0.1 N
|
bezpieczny |
| 15 mm |
119 Gs
11.9 mT
|
0.00 kg / 2.0 g
0.0 N
|
bezpieczny |
| 20 mm |
59 Gs
5.9 mT
|
0.00 kg / 0.5 g
0.0 N
|
bezpieczny |
| 30 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 15x5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.64 kg / 640.0 g
6.3 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 340.0 g
3.3 N
|
| 2 mm | Stal (~0.2) |
0.17 kg / 168.0 g
1.6 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 15x5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.96 kg / 960.0 g
9.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.64 kg / 640.0 g
6.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.32 kg / 320.0 g
3.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.60 kg / 1600.0 g
15.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 15x5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.32 kg / 320.0 g
3.1 N
|
| 1 mm |
|
0.80 kg / 800.0 g
7.8 N
|
| 2 mm |
|
1.60 kg / 1600.0 g
15.7 N
|
| 5 mm |
|
3.20 kg / 3200.0 g
31.4 N
|
| 10 mm |
|
3.20 kg / 3200.0 g
31.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 15x5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.20 kg / 3200.0 g
31.4 N
|
OK |
| 40 °C | -2.2% |
3.13 kg / 3129.6 g
30.7 N
|
OK |
| 60 °C | -4.4% |
3.06 kg / 3059.2 g
30.0 N
|
|
| 80 °C | -6.6% |
2.99 kg / 2988.8 g
29.3 N
|
|
| 100 °C | -28.8% |
2.28 kg / 2278.4 g
22.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 15x5x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
10.14 kg / 10136 g
99.4 N
5 608 Gs
|
N/A |
| 1 mm |
7.53 kg / 7530 g
73.9 N
8 071 Gs
|
6.78 kg / 6777 g
66.5 N
~0 Gs
|
| 2 mm |
5.38 kg / 5376 g
52.7 N
6 820 Gs
|
4.84 kg / 4838 g
47.5 N
~0 Gs
|
| 3 mm |
3.78 kg / 3777 g
37.1 N
5 716 Gs
|
3.40 kg / 3399 g
33.3 N
~0 Gs
|
| 5 mm |
1.87 kg / 1872 g
18.4 N
4 024 Gs
|
1.68 kg / 1685 g
16.5 N
~0 Gs
|
| 10 mm |
0.40 kg / 399 g
3.9 N
1 857 Gs
|
0.36 kg / 359 g
3.5 N
~0 Gs
|
| 20 mm |
0.04 kg / 38 g
0.4 N
572 Gs
|
0.03 kg / 34 g
0.3 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
67 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 15x5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 15x5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.11 km/h
(9.48 m/s)
|
0.13 J | |
| 30 mm |
58.95 km/h
(16.37 m/s)
|
0.38 J | |
| 50 mm |
76.10 km/h
(21.14 m/s)
|
0.63 J | |
| 100 mm |
107.62 km/h
(29.90 m/s)
|
1.26 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 15x5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 15x5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 366 Mx | 33.7 µWb |
| Współczynnik Pc | 0.60 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 15x5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.20 kg | Standard |
| Woda (dno rzeki) |
3.66 kg
(+0.46 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.60
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Wady
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- z wykorzystaniem płyty ze stali niskowęglowej, która służy jako element zamykający obwód
- której wymiar poprzeczny sięga przynajmniej 10 mm
- z powierzchnią idealnie równą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans – obecność ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – za chuda blacha nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają właściwości magnetyczne i siłę trzymania.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Uwaga: zadławienie
Magnesy neodymowe to nie zabawki. Inhalacja dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Przegrzanie magnesu
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i udźwig.
Ogromna siła
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Uszkodzenia ciała
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Interferencja magnetyczna
Intensywne promieniowanie magnetyczne zakłóca działanie kompasów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Dla uczulonych
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Karty i dyski
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Wpływ na zdrowie
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
