MP 40x10.4/5.5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030249
GTIN/EAN: 5906301812258
Średnica
40 mm [±0,1 mm]
Średnica wewnętrzna Ø
10.4/5.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
46.23 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.47 kg / 92.86 N
Indukcja magnetyczna
150.36 mT / 1504 Gs
Powłoka
[NiCuNi] nikiel
27.00 ZŁ z VAT / szt. + cena za transport
21.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie pisz korzystając z
nasz formularz online
na stronie kontakt.
Moc i formę magnesów skontrolujesz u nas w
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja - MP 40x10.4/5.5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 40x10.4/5.5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030249 |
| GTIN/EAN | 5906301812258 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 40 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 10.4/5.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 46.23 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.47 kg / 92.86 N |
| Indukcja magnetyczna ~ ? | 150.36 mT / 1504 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Niniejsze dane stanowią wynik symulacji matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MP 40x10.4/5.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1289 Gs
128.9 mT
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
mocny |
| 1 mm |
1265 Gs
126.5 mT
|
9.12 kg / 20.11 lbs
9120.9 g / 89.5 N
|
mocny |
| 2 mm |
1232 Gs
123.2 mT
|
8.66 kg / 19.10 lbs
8662.7 g / 85.0 N
|
mocny |
| 3 mm |
1193 Gs
119.3 mT
|
8.12 kg / 17.90 lbs
8121.3 g / 79.7 N
|
mocny |
| 5 mm |
1099 Gs
109.9 mT
|
6.89 kg / 15.18 lbs
6887.8 g / 67.6 N
|
mocny |
| 10 mm |
825 Gs
82.5 mT
|
3.88 kg / 8.56 lbs
3882.0 g / 38.1 N
|
mocny |
| 15 mm |
580 Gs
58.0 mT
|
1.92 kg / 4.22 lbs
1915.5 g / 18.8 N
|
słaby uchwyt |
| 20 mm |
399 Gs
39.9 mT
|
0.91 kg / 2.00 lbs
908.3 g / 8.9 N
|
słaby uchwyt |
| 30 mm |
195 Gs
19.5 mT
|
0.22 kg / 0.48 lbs
217.6 g / 2.1 N
|
słaby uchwyt |
| 50 mm |
61 Gs
6.1 mT
|
0.02 kg / 0.05 lbs
21.0 g / 0.2 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 40x10.4/5.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.89 kg / 4.18 lbs
1894.0 g / 18.6 N
|
| 1 mm | Stal (~0.2) |
1.82 kg / 4.02 lbs
1824.0 g / 17.9 N
|
| 2 mm | Stal (~0.2) |
1.73 kg / 3.82 lbs
1732.0 g / 17.0 N
|
| 3 mm | Stal (~0.2) |
1.62 kg / 3.58 lbs
1624.0 g / 15.9 N
|
| 5 mm | Stal (~0.2) |
1.38 kg / 3.04 lbs
1378.0 g / 13.5 N
|
| 10 mm | Stal (~0.2) |
0.78 kg / 1.71 lbs
776.0 g / 7.6 N
|
| 15 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 20 mm | Stal (~0.2) |
0.18 kg / 0.40 lbs
182.0 g / 1.8 N
|
| 30 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 40x10.4/5.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.84 kg / 6.26 lbs
2841.0 g / 27.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.89 kg / 4.18 lbs
1894.0 g / 18.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.95 kg / 2.09 lbs
947.0 g / 9.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.74 kg / 10.44 lbs
4735.0 g / 46.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 40x10.4/5.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.95 kg / 2.09 lbs
947.0 g / 9.3 N
|
| 1 mm |
|
2.37 kg / 5.22 lbs
2367.5 g / 23.2 N
|
| 2 mm |
|
4.74 kg / 10.44 lbs
4735.0 g / 46.5 N
|
| 3 mm |
|
7.10 kg / 15.66 lbs
7102.5 g / 69.7 N
|
| 5 mm |
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
| 10 mm |
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
| 11 mm |
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
| 12 mm |
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MP 40x10.4/5.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
OK |
| 40 °C | -2.2% |
9.26 kg / 20.42 lbs
9261.7 g / 90.9 N
|
OK |
| 60 °C | -4.4% |
9.05 kg / 19.96 lbs
9053.3 g / 88.8 N
|
|
| 80 °C | -6.6% |
8.84 kg / 19.50 lbs
8845.0 g / 86.8 N
|
|
| 100 °C | -28.8% |
6.74 kg / 14.86 lbs
6742.6 g / 66.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MP 40x10.4/5.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
10.73 kg / 23.65 lbs
2 424 Gs
|
1.61 kg / 3.55 lbs
1609 g / 15.8 N
|
N/A |
| 1 mm |
10.55 kg / 23.25 lbs
2 555 Gs
|
1.58 kg / 3.49 lbs
1582 g / 15.5 N
|
9.49 kg / 20.93 lbs
~0 Gs
|
| 2 mm |
10.33 kg / 22.78 lbs
2 529 Gs
|
1.55 kg / 3.42 lbs
1550 g / 15.2 N
|
9.30 kg / 20.50 lbs
~0 Gs
|
| 3 mm |
10.09 kg / 22.23 lbs
2 499 Gs
|
1.51 kg / 3.34 lbs
1513 g / 14.8 N
|
9.08 kg / 20.01 lbs
~0 Gs
|
| 5 mm |
9.52 kg / 20.98 lbs
2 427 Gs
|
1.43 kg / 3.15 lbs
1427 g / 14.0 N
|
8.56 kg / 18.88 lbs
~0 Gs
|
| 10 mm |
7.80 kg / 17.20 lbs
2 198 Gs
|
1.17 kg / 2.58 lbs
1170 g / 11.5 N
|
7.02 kg / 15.48 lbs
~0 Gs
|
| 20 mm |
4.40 kg / 9.69 lbs
1 650 Gs
|
0.66 kg / 1.45 lbs
660 g / 6.5 N
|
3.96 kg / 8.72 lbs
~0 Gs
|
| 50 mm |
0.49 kg / 1.09 lbs
553 Gs
|
0.07 kg / 0.16 lbs
74 g / 0.7 N
|
0.44 kg / 0.98 lbs
~0 Gs
|
| 60 mm |
0.25 kg / 0.54 lbs
391 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 70 mm |
0.13 kg / 0.28 lbs
282 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 80 mm |
0.07 kg / 0.15 lbs
209 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 lbs
158 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
121 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MP 40x10.4/5.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 40x10.4/5.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.75 km/h
(4.93 m/s)
|
0.56 J | |
| 30 mm |
25.36 km/h
(7.04 m/s)
|
1.15 J | |
| 50 mm |
32.32 km/h
(8.98 m/s)
|
1.86 J | |
| 100 mm |
45.65 km/h
(12.68 m/s)
|
3.72 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 40x10.4/5.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 40x10.4/5.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 767 Mx | 177.7 µWb |
| Współczynnik Pc | 0.17 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 40x10.4/5.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.47 kg | Standard |
| Woda (dno rzeki) |
10.84 kg
(+1.37 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.17
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny to min. 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (brak zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – zbyt cienka blacha nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
Instrukcja bezpiecznej obsługi magnesów
Wpływ na smartfony
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Tylko dla dorosłych
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Rozprysk materiału
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Implanty kardiologiczne
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Ostrzeżenie dla alergików
Część populacji ma alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Zalecamy noszenie rękawic bezlateksowych.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Uszkodzenia ciała
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Samozapłon
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
