MP 40x10.4/5.5x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030249
GTIN/EAN: 5906301812258
Średnica
40 mm [±0,1 mm]
Średnica wewnętrzna Ø
10.4/5.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
46.23 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.47 kg / 92.86 N
Indukcja magnetyczna
150.36 mT / 1504 Gs
Powłoka
[NiCuNi] nikiel
27.00 ZŁ z VAT / szt. + cena za transport
21.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie napisz przez
formularz
na stronie kontakt.
Masę a także formę elementów magnetycznych wyliczysz u nas w
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MP 40x10.4/5.5x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 40x10.4/5.5x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030249 |
| GTIN/EAN | 5906301812258 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 40 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 10.4/5.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 46.23 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.47 kg / 92.86 N |
| Indukcja magnetyczna ~ ? | 150.36 mT / 1504 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Przedstawione dane stanowią wynik analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MP 40x10.4/5.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1289 Gs
128.9 mT
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
mocny |
| 1 mm |
1265 Gs
126.5 mT
|
9.12 kg / 20.11 lbs
9120.9 g / 89.5 N
|
mocny |
| 2 mm |
1232 Gs
123.2 mT
|
8.66 kg / 19.10 lbs
8662.7 g / 85.0 N
|
mocny |
| 3 mm |
1193 Gs
119.3 mT
|
8.12 kg / 17.90 lbs
8121.3 g / 79.7 N
|
mocny |
| 5 mm |
1099 Gs
109.9 mT
|
6.89 kg / 15.18 lbs
6887.8 g / 67.6 N
|
mocny |
| 10 mm |
825 Gs
82.5 mT
|
3.88 kg / 8.56 lbs
3882.0 g / 38.1 N
|
mocny |
| 15 mm |
580 Gs
58.0 mT
|
1.92 kg / 4.22 lbs
1915.5 g / 18.8 N
|
niskie ryzyko |
| 20 mm |
399 Gs
39.9 mT
|
0.91 kg / 2.00 lbs
908.3 g / 8.9 N
|
niskie ryzyko |
| 30 mm |
195 Gs
19.5 mT
|
0.22 kg / 0.48 lbs
217.6 g / 2.1 N
|
niskie ryzyko |
| 50 mm |
61 Gs
6.1 mT
|
0.02 kg / 0.05 lbs
21.0 g / 0.2 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 40x10.4/5.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.89 kg / 4.18 lbs
1894.0 g / 18.6 N
|
| 1 mm | Stal (~0.2) |
1.82 kg / 4.02 lbs
1824.0 g / 17.9 N
|
| 2 mm | Stal (~0.2) |
1.73 kg / 3.82 lbs
1732.0 g / 17.0 N
|
| 3 mm | Stal (~0.2) |
1.62 kg / 3.58 lbs
1624.0 g / 15.9 N
|
| 5 mm | Stal (~0.2) |
1.38 kg / 3.04 lbs
1378.0 g / 13.5 N
|
| 10 mm | Stal (~0.2) |
0.78 kg / 1.71 lbs
776.0 g / 7.6 N
|
| 15 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 20 mm | Stal (~0.2) |
0.18 kg / 0.40 lbs
182.0 g / 1.8 N
|
| 30 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 40x10.4/5.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.84 kg / 6.26 lbs
2841.0 g / 27.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.89 kg / 4.18 lbs
1894.0 g / 18.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.95 kg / 2.09 lbs
947.0 g / 9.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.74 kg / 10.44 lbs
4735.0 g / 46.5 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 40x10.4/5.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.95 kg / 2.09 lbs
947.0 g / 9.3 N
|
| 1 mm |
|
2.37 kg / 5.22 lbs
2367.5 g / 23.2 N
|
| 2 mm |
|
4.74 kg / 10.44 lbs
4735.0 g / 46.5 N
|
| 3 mm |
|
7.10 kg / 15.66 lbs
7102.5 g / 69.7 N
|
| 5 mm |
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
| 10 mm |
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
| 11 mm |
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
| 12 mm |
|
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MP 40x10.4/5.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.47 kg / 20.88 lbs
9470.0 g / 92.9 N
|
OK |
| 40 °C | -2.2% |
9.26 kg / 20.42 lbs
9261.7 g / 90.9 N
|
OK |
| 60 °C | -4.4% |
9.05 kg / 19.96 lbs
9053.3 g / 88.8 N
|
|
| 80 °C | -6.6% |
8.84 kg / 19.50 lbs
8845.0 g / 86.8 N
|
|
| 100 °C | -28.8% |
6.74 kg / 14.86 lbs
6742.6 g / 66.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 40x10.4/5.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
10.73 kg / 23.65 lbs
2 424 Gs
|
1.61 kg / 3.55 lbs
1609 g / 15.8 N
|
N/A |
| 1 mm |
10.55 kg / 23.25 lbs
2 555 Gs
|
1.58 kg / 3.49 lbs
1582 g / 15.5 N
|
9.49 kg / 20.93 lbs
~0 Gs
|
| 2 mm |
10.33 kg / 22.78 lbs
2 529 Gs
|
1.55 kg / 3.42 lbs
1550 g / 15.2 N
|
9.30 kg / 20.50 lbs
~0 Gs
|
| 3 mm |
10.09 kg / 22.23 lbs
2 499 Gs
|
1.51 kg / 3.34 lbs
1513 g / 14.8 N
|
9.08 kg / 20.01 lbs
~0 Gs
|
| 5 mm |
9.52 kg / 20.98 lbs
2 427 Gs
|
1.43 kg / 3.15 lbs
1427 g / 14.0 N
|
8.56 kg / 18.88 lbs
~0 Gs
|
| 10 mm |
7.80 kg / 17.20 lbs
2 198 Gs
|
1.17 kg / 2.58 lbs
1170 g / 11.5 N
|
7.02 kg / 15.48 lbs
~0 Gs
|
| 20 mm |
4.40 kg / 9.69 lbs
1 650 Gs
|
0.66 kg / 1.45 lbs
660 g / 6.5 N
|
3.96 kg / 8.72 lbs
~0 Gs
|
| 50 mm |
0.49 kg / 1.09 lbs
553 Gs
|
0.07 kg / 0.16 lbs
74 g / 0.7 N
|
0.44 kg / 0.98 lbs
~0 Gs
|
| 60 mm |
0.25 kg / 0.54 lbs
391 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 70 mm |
0.13 kg / 0.28 lbs
282 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 80 mm |
0.07 kg / 0.15 lbs
209 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 lbs
158 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
121 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 40x10.4/5.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 40x10.4/5.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.75 km/h
(4.93 m/s)
|
0.56 J | |
| 30 mm |
25.36 km/h
(7.04 m/s)
|
1.15 J | |
| 50 mm |
32.32 km/h
(8.98 m/s)
|
1.86 J | |
| 100 mm |
45.65 km/h
(12.68 m/s)
|
3.72 J |
Tabela 9: Odporność na korozję
MP 40x10.4/5.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 40x10.4/5.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 767 Mx | 177.7 µWb |
| Współczynnik Pc | 0.17 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MP 40x10.4/5.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.47 kg | Standard |
| Woda (dno rzeki) |
10.84 kg
(+1.37 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.17
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) zyskują nowoczesny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- z użyciem blachy ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- o grubości nie mniejszej niż 10 mm
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza nośność.
Ostrzeżenia
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem dzieci i zwierząt.
Uszkodzenia ciała
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Siła neodymu
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Ryzyko pęknięcia
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Limity termiczne
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Ostrzeżenie dla sercowców
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Nie wierć w magnesach
Pył powstający podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
