MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030198
GTIN/EAN: 5906301812159
Średnica
32 mm [±0,1 mm]
Średnica wewnętrzna Ø
16 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
13.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.79 kg / 27.40 N
Indukcja magnetyczna
114.25 mT / 1142 Gs
Powłoka
[NiCuNi] nikiel
5.24 ZŁ z VAT / szt. + cena za transport
4.26 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie pisz poprzez
nasz formularz online
na stronie kontaktowej.
Właściwości i formę elementów magnetycznych obliczysz dzięki naszemu
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry produktu - MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030198 |
| GTIN/EAN | 5906301812159 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 32 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 16 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 13.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.79 kg / 27.40 N |
| Indukcja magnetyczna ~ ? | 114.25 mT / 1142 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Niniejsze informacje stanowią rezultat kalkulacji fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MP 32x16x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5552 Gs
555.2 mT
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
mocny |
| 1 mm |
5202 Gs
520.2 mT
|
2.45 kg / 5.40 lbs
2448.8 g / 24.0 N
|
mocny |
| 2 mm |
4850 Gs
485.0 mT
|
2.13 kg / 4.69 lbs
2128.7 g / 20.9 N
|
mocny |
| 3 mm |
4504 Gs
450.4 mT
|
1.84 kg / 4.05 lbs
1836.3 g / 18.0 N
|
słaby uchwyt |
| 5 mm |
3849 Gs
384.9 mT
|
1.34 kg / 2.96 lbs
1340.5 g / 13.2 N
|
słaby uchwyt |
| 10 mm |
2513 Gs
251.3 mT
|
0.57 kg / 1.26 lbs
571.6 g / 5.6 N
|
słaby uchwyt |
| 15 mm |
1633 Gs
163.3 mT
|
0.24 kg / 0.53 lbs
241.2 g / 2.4 N
|
słaby uchwyt |
| 20 mm |
1087 Gs
108.7 mT
|
0.11 kg / 0.24 lbs
107.0 g / 1.0 N
|
słaby uchwyt |
| 30 mm |
535 Gs
53.5 mT
|
0.03 kg / 0.06 lbs
25.9 g / 0.3 N
|
słaby uchwyt |
| 50 mm |
181 Gs
18.1 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MP 32x16x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 1.23 lbs
558.0 g / 5.5 N
|
| 1 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
490.0 g / 4.8 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 0.94 lbs
426.0 g / 4.2 N
|
| 3 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
368.0 g / 3.6 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
268.0 g / 2.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
114.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 32x16x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.84 kg / 1.85 lbs
837.0 g / 8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 1.23 lbs
558.0 g / 5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 0.62 lbs
279.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.40 kg / 3.08 lbs
1395.0 g / 13.7 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 32x16x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 0.62 lbs
279.0 g / 2.7 N
|
| 1 mm |
|
0.70 kg / 1.54 lbs
697.5 g / 6.8 N
|
| 2 mm |
|
1.40 kg / 3.08 lbs
1395.0 g / 13.7 N
|
| 3 mm |
|
2.09 kg / 4.61 lbs
2092.5 g / 20.5 N
|
| 5 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 10 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 11 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 12 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MP 32x16x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
OK |
| 40 °C | -2.2% |
2.73 kg / 6.02 lbs
2728.6 g / 26.8 N
|
OK |
| 60 °C | -4.4% |
2.67 kg / 5.88 lbs
2667.2 g / 26.2 N
|
OK |
| 80 °C | -6.6% |
2.61 kg / 5.74 lbs
2605.9 g / 25.6 N
|
|
| 100 °C | -28.8% |
1.99 kg / 4.38 lbs
1986.5 g / 19.5 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 32x16x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
128.78 kg / 283.90 lbs
6 014 Gs
|
19.32 kg / 42.59 lbs
19317 g / 189.5 N
|
N/A |
| 1 mm |
120.86 kg / 266.44 lbs
10 757 Gs
|
18.13 kg / 39.97 lbs
18128 g / 177.8 N
|
108.77 kg / 239.80 lbs
~0 Gs
|
| 2 mm |
113.03 kg / 249.19 lbs
10 403 Gs
|
16.95 kg / 37.38 lbs
16954 g / 166.3 N
|
101.73 kg / 224.27 lbs
~0 Gs
|
| 3 mm |
105.49 kg / 232.56 lbs
10 050 Gs
|
15.82 kg / 34.88 lbs
15823 g / 155.2 N
|
94.94 kg / 209.31 lbs
~0 Gs
|
| 5 mm |
91.34 kg / 201.37 lbs
9 352 Gs
|
13.70 kg / 30.21 lbs
13701 g / 134.4 N
|
82.21 kg / 181.23 lbs
~0 Gs
|
| 10 mm |
61.88 kg / 136.41 lbs
7 697 Gs
|
9.28 kg / 20.46 lbs
9281 g / 91.0 N
|
55.69 kg / 122.77 lbs
~0 Gs
|
| 20 mm |
26.38 kg / 58.16 lbs
5 026 Gs
|
3.96 kg / 8.72 lbs
3957 g / 38.8 N
|
23.74 kg / 52.35 lbs
~0 Gs
|
| 50 mm |
2.35 kg / 5.17 lbs
1 499 Gs
|
0.35 kg / 0.78 lbs
352 g / 3.5 N
|
2.11 kg / 4.66 lbs
~0 Gs
|
| 60 mm |
1.19 kg / 2.63 lbs
1 069 Gs
|
0.18 kg / 0.39 lbs
179 g / 1.8 N
|
1.07 kg / 2.37 lbs
~0 Gs
|
| 70 mm |
0.65 kg / 1.42 lbs
786 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.28 lbs
~0 Gs
|
| 80 mm |
0.37 kg / 0.81 lbs
594 Gs
|
0.06 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.73 lbs
~0 Gs
|
| 90 mm |
0.22 kg / 0.49 lbs
459 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
| 100 mm |
0.14 kg / 0.30 lbs
362 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 32x16x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 32x16x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.21 km/h
(4.50 m/s)
|
0.14 J | |
| 30 mm |
25.19 km/h
(7.00 m/s)
|
0.33 J | |
| 50 mm |
32.36 km/h
(8.99 m/s)
|
0.55 J | |
| 100 mm |
45.73 km/h
(12.70 m/s)
|
1.09 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 32x16x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 32x16x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 808 Mx | 388.1 µWb |
| Współczynnik Pc | 0.90 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 32x16x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.79 kg | Standard |
| Woda (dno rzeki) |
3.19 kg
(+0.40 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.90
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi jedynie ~1% (wg testów).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której grubość to min. 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Szczelina – obecność jakiejkolwiek warstwy (farba, brud, powietrze) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Pole magnetyczne a elektronika
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Wpływ na zdrowie
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Wpływ na smartfony
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Ryzyko połknięcia
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Siła neodymu
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Kruchość materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Obróbka mechaniczna
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ostrzeżenie dla alergików
Część populacji ma alergię kontaktową na nikiel, którym zabezpieczane są nasze produkty. Dłuższy kontakt może wywołać silną reakcję alergiczną. Sugerujemy stosowanie rękawiczek ochronnych.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
