MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030198
GTIN/EAN: 5906301812159
Średnica
32 mm [±0,1 mm]
Średnica wewnętrzna Ø
16 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
13.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.79 kg / 27.40 N
Indukcja magnetyczna
114.25 mT / 1142 Gs
Powłoka
[NiCuNi] nikiel
5.24 ZŁ z VAT / szt. + cena za transport
4.26 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie zostaw wiadomość poprzez
nasz formularz online
na naszej stronie.
Siłę oraz wygląd magnesu testujesz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 32x16x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030198 |
| GTIN/EAN | 5906301812159 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 32 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 16 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 13.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.79 kg / 27.40 N |
| Indukcja magnetyczna ~ ? | 114.25 mT / 1142 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione dane stanowią wynik analizy fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MP 32x16x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5552 Gs
555.2 mT
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
uwaga |
| 1 mm |
5202 Gs
520.2 mT
|
2.45 kg / 5.40 lbs
2448.8 g / 24.0 N
|
uwaga |
| 2 mm |
4850 Gs
485.0 mT
|
2.13 kg / 4.69 lbs
2128.7 g / 20.9 N
|
uwaga |
| 3 mm |
4504 Gs
450.4 mT
|
1.84 kg / 4.05 lbs
1836.3 g / 18.0 N
|
niskie ryzyko |
| 5 mm |
3849 Gs
384.9 mT
|
1.34 kg / 2.96 lbs
1340.5 g / 13.2 N
|
niskie ryzyko |
| 10 mm |
2513 Gs
251.3 mT
|
0.57 kg / 1.26 lbs
571.6 g / 5.6 N
|
niskie ryzyko |
| 15 mm |
1633 Gs
163.3 mT
|
0.24 kg / 0.53 lbs
241.2 g / 2.4 N
|
niskie ryzyko |
| 20 mm |
1087 Gs
108.7 mT
|
0.11 kg / 0.24 lbs
107.0 g / 1.0 N
|
niskie ryzyko |
| 30 mm |
535 Gs
53.5 mT
|
0.03 kg / 0.06 lbs
25.9 g / 0.3 N
|
niskie ryzyko |
| 50 mm |
181 Gs
18.1 mT
|
0.00 kg / 0.01 lbs
3.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 32x16x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.56 kg / 1.23 lbs
558.0 g / 5.5 N
|
| 1 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
490.0 g / 4.8 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 0.94 lbs
426.0 g / 4.2 N
|
| 3 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
368.0 g / 3.6 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
268.0 g / 2.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
114.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 32x16x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.84 kg / 1.85 lbs
837.0 g / 8.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.56 kg / 1.23 lbs
558.0 g / 5.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 0.62 lbs
279.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.40 kg / 3.08 lbs
1395.0 g / 13.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 32x16x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 0.62 lbs
279.0 g / 2.7 N
|
| 1 mm |
|
0.70 kg / 1.54 lbs
697.5 g / 6.8 N
|
| 2 mm |
|
1.40 kg / 3.08 lbs
1395.0 g / 13.7 N
|
| 3 mm |
|
2.09 kg / 4.61 lbs
2092.5 g / 20.5 N
|
| 5 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 10 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 11 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
| 12 mm |
|
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MP 32x16x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.79 kg / 6.15 lbs
2790.0 g / 27.4 N
|
OK |
| 40 °C | -2.2% |
2.73 kg / 6.02 lbs
2728.6 g / 26.8 N
|
OK |
| 60 °C | -4.4% |
2.67 kg / 5.88 lbs
2667.2 g / 26.2 N
|
OK |
| 80 °C | -6.6% |
2.61 kg / 5.74 lbs
2605.9 g / 25.6 N
|
|
| 100 °C | -28.8% |
1.99 kg / 4.38 lbs
1986.5 g / 19.5 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 32x16x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
128.78 kg / 283.90 lbs
6 014 Gs
|
19.32 kg / 42.59 lbs
19317 g / 189.5 N
|
N/A |
| 1 mm |
120.86 kg / 266.44 lbs
10 757 Gs
|
18.13 kg / 39.97 lbs
18128 g / 177.8 N
|
108.77 kg / 239.80 lbs
~0 Gs
|
| 2 mm |
113.03 kg / 249.19 lbs
10 403 Gs
|
16.95 kg / 37.38 lbs
16954 g / 166.3 N
|
101.73 kg / 224.27 lbs
~0 Gs
|
| 3 mm |
105.49 kg / 232.56 lbs
10 050 Gs
|
15.82 kg / 34.88 lbs
15823 g / 155.2 N
|
94.94 kg / 209.31 lbs
~0 Gs
|
| 5 mm |
91.34 kg / 201.37 lbs
9 352 Gs
|
13.70 kg / 30.21 lbs
13701 g / 134.4 N
|
82.21 kg / 181.23 lbs
~0 Gs
|
| 10 mm |
61.88 kg / 136.41 lbs
7 697 Gs
|
9.28 kg / 20.46 lbs
9281 g / 91.0 N
|
55.69 kg / 122.77 lbs
~0 Gs
|
| 20 mm |
26.38 kg / 58.16 lbs
5 026 Gs
|
3.96 kg / 8.72 lbs
3957 g / 38.8 N
|
23.74 kg / 52.35 lbs
~0 Gs
|
| 50 mm |
2.35 kg / 5.17 lbs
1 499 Gs
|
0.35 kg / 0.78 lbs
352 g / 3.5 N
|
2.11 kg / 4.66 lbs
~0 Gs
|
| 60 mm |
1.19 kg / 2.63 lbs
1 069 Gs
|
0.18 kg / 0.39 lbs
179 g / 1.8 N
|
1.07 kg / 2.37 lbs
~0 Gs
|
| 70 mm |
0.65 kg / 1.42 lbs
786 Gs
|
0.10 kg / 0.21 lbs
97 g / 1.0 N
|
0.58 kg / 1.28 lbs
~0 Gs
|
| 80 mm |
0.37 kg / 0.81 lbs
594 Gs
|
0.06 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.73 lbs
~0 Gs
|
| 90 mm |
0.22 kg / 0.49 lbs
459 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
| 100 mm |
0.14 kg / 0.30 lbs
362 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MP 32x16x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 32x16x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.21 km/h
(4.50 m/s)
|
0.14 J | |
| 30 mm |
25.19 km/h
(7.00 m/s)
|
0.33 J | |
| 50 mm |
32.36 km/h
(8.99 m/s)
|
0.55 J | |
| 100 mm |
45.73 km/h
(12.70 m/s)
|
1.09 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 32x16x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 32x16x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 808 Mx | 388.1 µWb |
| Współczynnik Pc | 0.90 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 32x16x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.79 kg | Standard |
| Woda (dno rzeki) |
3.19 kg
(+0.40 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.90
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do wymagań klienta.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- z wykorzystaniem blachy ze stali o wysokiej przenikalności, działającej jako zwora magnetyczna
- o przekroju wynoszącej minimum 10 mm
- o szlifowanej powierzchni kontaktu
- w warunkach idealnego przylegania (metal do metalu)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i udźwig.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Zakaz zabawy
Silne magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Limity termiczne
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Samozapłon
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Uwaga na odpryski
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Niebezpieczeństwo dla rozruszników
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Ostrożność wymagana
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Poważne obrażenia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Niszczenie danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Nadwrażliwość na metale
Pewna grupa użytkowników wykazuje uczulenie na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Zalecamy noszenie rękawic bezlateksowych.
