MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030195
GTIN: 5906301812128
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
7 mm [±0,1 mm]
Wysokość
9 mm [±0,1 mm]
Waga
30.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
14.82 kg / 145.39 N
Indukcja magnetyczna
362.13 mT / 3621 Gs
Powłoka
[NiCuNi] nikiel
12.55 ZŁ z VAT / szt. + cena za transport
10.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub skontaktuj się za pomocą
formularz zgłoszeniowy
na stronie kontaktowej.
Masę i formę magnesów neodymowych skontrolujesz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030195 |
| GTIN | 5906301812128 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7 mm [±0,1 mm] |
| Wysokość | 9 mm [±0,1 mm] |
| Waga | 30.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 14.82 kg / 145.39 N |
| Indukcja magnetyczna ~ ? | 362.13 mT / 3621 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu - dane
Poniższe informacje stanowią bezpośredni efekt kalkulacji matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
MP 25x7x9 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
14.82 kg / 14820.0 g
145.4 N
|
miażdżący |
| 1 mm |
5310 Gs
531.0 mT
|
12.52 kg / 12519.6 g
122.8 N
|
miażdżący |
| 2 mm |
4846 Gs
484.6 mT
|
10.43 kg / 10425.5 g
102.3 N
|
miażdżący |
| 3 mm |
4397 Gs
439.7 mT
|
8.59 kg / 8586.1 g
84.2 N
|
uwaga |
| 5 mm |
3576 Gs
357.6 mT
|
5.68 kg / 5678.0 g
55.7 N
|
uwaga |
| 10 mm |
2073 Gs
207.3 mT
|
1.91 kg / 1907.5 g
18.7 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.67 kg / 673.1 g
6.6 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.27 kg / 265.0 g
2.6 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.06 kg / 56.2 g
0.6 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.01 kg / 5.9 g
0.1 N
|
bezpieczny |
MP 25x7x9 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.96 kg / 2964.0 g
29.1 N
|
| 1 mm | Stal (~0.2) |
2.50 kg / 2504.0 g
24.6 N
|
| 2 mm | Stal (~0.2) |
2.09 kg / 2086.0 g
20.5 N
|
| 3 mm | Stal (~0.2) |
1.72 kg / 1718.0 g
16.9 N
|
| 5 mm | Stal (~0.2) |
1.14 kg / 1136.0 g
11.1 N
|
| 10 mm | Stal (~0.2) |
0.38 kg / 382.0 g
3.7 N
|
| 15 mm | Stal (~0.2) |
0.13 kg / 134.0 g
1.3 N
|
| 20 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MP 25x7x9 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.45 kg / 4446.0 g
43.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.96 kg / 2964.0 g
29.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.48 kg / 1482.0 g
14.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.41 kg / 7410.0 g
72.7 N
|
MP 25x7x9 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 741.0 g
7.3 N
|
| 1 mm |
|
1.85 kg / 1852.5 g
18.2 N
|
| 2 mm |
|
3.71 kg / 3705.0 g
36.3 N
|
| 5 mm |
|
9.26 kg / 9262.5 g
90.9 N
|
| 10 mm |
|
14.82 kg / 14820.0 g
145.4 N
|
MP 25x7x9 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.82 kg / 14820.0 g
145.4 N
|
OK |
| 40 °C | -2.2% |
14.49 kg / 14494.0 g
142.2 N
|
OK |
| 60 °C | -4.4% |
14.17 kg / 14167.9 g
139.0 N
|
OK |
| 80 °C | -6.6% |
13.84 kg / 13841.9 g
135.8 N
|
|
| 100 °C | -28.8% |
10.55 kg / 10551.8 g
103.5 N
|
MP 25x7x9 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
74.73 kg / 74732 g
733.1 N
6 082 Gs
|
N/A |
| 1 mm |
68.86 kg / 68859 g
675.5 N
11 091 Gs
|
61.97 kg / 61973 g
608.0 N
~0 Gs
|
| 2 mm |
63.13 kg / 63132 g
619.3 N
10 620 Gs
|
56.82 kg / 56819 g
557.4 N
~0 Gs
|
| 3 mm |
57.70 kg / 57697 g
566.0 N
10 153 Gs
|
51.93 kg / 51927 g
509.4 N
~0 Gs
|
| 5 mm |
47.77 kg / 47770 g
468.6 N
9 238 Gs
|
42.99 kg / 42993 g
421.8 N
~0 Gs
|
| 10 mm |
28.63 kg / 28632 g
280.9 N
7 152 Gs
|
25.77 kg / 25769 g
252.8 N
~0 Gs
|
| 20 mm |
9.62 kg / 9619 g
94.4 N
4 145 Gs
|
8.66 kg / 8657 g
84.9 N
~0 Gs
|
| 50 mm |
0.59 kg / 587 g
5.8 N
1 024 Gs
|
0.53 kg / 528 g
5.2 N
~0 Gs
|
MP 25x7x9 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
MP 25x7x9 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.94 km/h
(6.65 m/s)
|
0.68 J | |
| 30 mm |
38.57 km/h
(10.71 m/s)
|
1.75 J | |
| 50 mm |
49.69 km/h
(13.80 m/s)
|
2.91 J | |
| 100 mm |
70.25 km/h
(19.52 m/s)
|
5.82 J |
MP 25x7x9 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 25x7x9 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 495 Mx | 225.0 µWb |
| Współczynnik Pc | 1.05 | Wysoki (Stabilny) |
MP 25x7x9 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.82 kg | Standard |
| Woda (dno rzeki) |
16.97 kg
(+2.15 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
Zobacz też inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- z użyciem płyty ze stali niskowęglowej, która służy jako element zamykający obwód
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z powierzchnią oczyszczoną i gładką
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Szczelina – obecność ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe osłabiają interakcję z magnesem.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza nośność.
Dla uczulonych
Niektóre osoby wykazuje nadwrażliwość na nikiel, którym zabezpieczane są nasze produkty. Dłuższy kontakt może powodować wysypkę. Wskazane jest noszenie rękawic bezlateksowych.
Zagrożenie dla nawigacji
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Łatwopalność
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Uszkodzenia ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Implanty kardiologiczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj poza zasięgiem niepowołanych osób.
Moc przyciągania
Używaj magnesy świadomie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Urządzenia elektroniczne
Potężne oddziaływanie może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
Magnesy są kruche
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Przegrzanie magnesu
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
