MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030195
GTIN/EAN: 5906301812128
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
7 mm [±0,1 mm]
Wysokość
9 mm [±0,1 mm]
Waga
30.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
14.82 kg / 145.39 N
Indukcja magnetyczna
362.13 mT / 3621 Gs
Powłoka
[NiCuNi] nikiel
12.55 ZŁ z VAT / szt. + cena za transport
10.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie daj znać przez
formularz zapytania
przez naszą stronę.
Udźwig oraz budowę magnesu zweryfikujesz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Karta produktu - MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030195 |
| GTIN/EAN | 5906301812128 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7 mm [±0,1 mm] |
| Wysokość | 9 mm [±0,1 mm] |
| Waga | 30.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 14.82 kg / 145.39 N |
| Indukcja magnetyczna ~ ? | 362.13 mT / 3621 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Poniższe informacje są rezultat symulacji matematycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 25x7x9 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
miażdżący |
| 1 mm |
5310 Gs
531.0 mT
|
12.52 kg / 27.60 lbs
12519.6 g / 122.8 N
|
miażdżący |
| 2 mm |
4846 Gs
484.6 mT
|
10.43 kg / 22.98 lbs
10425.5 g / 102.3 N
|
miażdżący |
| 3 mm |
4397 Gs
439.7 mT
|
8.59 kg / 18.93 lbs
8586.1 g / 84.2 N
|
mocny |
| 5 mm |
3576 Gs
357.6 mT
|
5.68 kg / 12.52 lbs
5678.0 g / 55.7 N
|
mocny |
| 10 mm |
2073 Gs
207.3 mT
|
1.91 kg / 4.21 lbs
1907.5 g / 18.7 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.67 kg / 1.48 lbs
673.1 g / 6.6 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.27 kg / 0.58 lbs
265.0 g / 2.6 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.06 kg / 0.12 lbs
56.2 g / 0.6 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.01 kg / 0.01 lbs
5.9 g / 0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (ściana)
MP 25x7x9 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.96 kg / 6.53 lbs
2964.0 g / 29.1 N
|
| 1 mm | Stal (~0.2) |
2.50 kg / 5.52 lbs
2504.0 g / 24.6 N
|
| 2 mm | Stal (~0.2) |
2.09 kg / 4.60 lbs
2086.0 g / 20.5 N
|
| 3 mm | Stal (~0.2) |
1.72 kg / 3.79 lbs
1718.0 g / 16.9 N
|
| 5 mm | Stal (~0.2) |
1.14 kg / 2.50 lbs
1136.0 g / 11.1 N
|
| 10 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
382.0 g / 3.7 N
|
| 15 mm | Stal (~0.2) |
0.13 kg / 0.30 lbs
134.0 g / 1.3 N
|
| 20 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 25x7x9 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.45 kg / 9.80 lbs
4446.0 g / 43.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.96 kg / 6.53 lbs
2964.0 g / 29.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.48 kg / 3.27 lbs
1482.0 g / 14.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.41 kg / 16.34 lbs
7410.0 g / 72.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 25x7x9 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 1.63 lbs
741.0 g / 7.3 N
|
| 1 mm |
|
1.85 kg / 4.08 lbs
1852.5 g / 18.2 N
|
| 2 mm |
|
3.71 kg / 8.17 lbs
3705.0 g / 36.3 N
|
| 3 mm |
|
5.56 kg / 12.25 lbs
5557.5 g / 54.5 N
|
| 5 mm |
|
9.26 kg / 20.42 lbs
9262.5 g / 90.9 N
|
| 10 mm |
|
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
| 11 mm |
|
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
| 12 mm |
|
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MP 25x7x9 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.82 kg / 32.67 lbs
14820.0 g / 145.4 N
|
OK |
| 40 °C | -2.2% |
14.49 kg / 31.95 lbs
14494.0 g / 142.2 N
|
OK |
| 60 °C | -4.4% |
14.17 kg / 31.23 lbs
14167.9 g / 139.0 N
|
OK |
| 80 °C | -6.6% |
13.84 kg / 30.52 lbs
13841.9 g / 135.8 N
|
|
| 100 °C | -28.8% |
10.55 kg / 23.26 lbs
10551.8 g / 103.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MP 25x7x9 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
74.73 kg / 164.76 lbs
6 082 Gs
|
11.21 kg / 24.71 lbs
11210 g / 110.0 N
|
N/A |
| 1 mm |
68.86 kg / 151.81 lbs
11 091 Gs
|
10.33 kg / 22.77 lbs
10329 g / 101.3 N
|
61.97 kg / 136.63 lbs
~0 Gs
|
| 2 mm |
63.13 kg / 139.18 lbs
10 620 Gs
|
9.47 kg / 20.88 lbs
9470 g / 92.9 N
|
56.82 kg / 125.26 lbs
~0 Gs
|
| 3 mm |
57.70 kg / 127.20 lbs
10 153 Gs
|
8.65 kg / 19.08 lbs
8654 g / 84.9 N
|
51.93 kg / 114.48 lbs
~0 Gs
|
| 5 mm |
47.77 kg / 105.31 lbs
9 238 Gs
|
7.17 kg / 15.80 lbs
7165 g / 70.3 N
|
42.99 kg / 94.78 lbs
~0 Gs
|
| 10 mm |
28.63 kg / 63.12 lbs
7 152 Gs
|
4.29 kg / 9.47 lbs
4295 g / 42.1 N
|
25.77 kg / 56.81 lbs
~0 Gs
|
| 20 mm |
9.62 kg / 21.21 lbs
4 145 Gs
|
1.44 kg / 3.18 lbs
1443 g / 14.2 N
|
8.66 kg / 19.09 lbs
~0 Gs
|
| 50 mm |
0.59 kg / 1.29 lbs
1 024 Gs
|
0.09 kg / 0.19 lbs
88 g / 0.9 N
|
0.53 kg / 1.16 lbs
~0 Gs
|
| 60 mm |
0.28 kg / 0.62 lbs
712 Gs
|
0.04 kg / 0.09 lbs
43 g / 0.4 N
|
0.26 kg / 0.56 lbs
~0 Gs
|
| 70 mm |
0.15 kg / 0.33 lbs
514 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 80 mm |
0.08 kg / 0.18 lbs
383 Gs
|
0.01 kg / 0.03 lbs
12 g / 0.1 N
|
0.07 kg / 0.16 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.11 lbs
293 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MP 25x7x9 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MP 25x7x9 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.94 km/h
(6.65 m/s)
|
0.68 J | |
| 30 mm |
38.57 km/h
(10.71 m/s)
|
1.75 J | |
| 50 mm |
49.69 km/h
(13.80 m/s)
|
2.91 J | |
| 100 mm |
70.25 km/h
(19.52 m/s)
|
5.82 J |
Tabela 9: Odporność na korozję
MP 25x7x9 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 25x7x9 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 22 495 Mx | 225.0 µWb |
| Współczynnik Pc | 1.05 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 25x7x9 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.82 kg | Standard |
| Woda (dno rzeki) |
16.97 kg
(+2.15 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.05
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z użyciem blachy ze stali o wysokiej przenikalności, która służy jako zwora magnetyczna
- o przekroju nie mniejszej niż 10 mm
- z powierzchnią oczyszczoną i gładką
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal osłabiają chwyt.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Temperatura pracy
Standardowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Uczulenie na powłokę
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Uszkodzenia ciała
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Ochrona oczu
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Uwaga: zadławienie
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
