magnesy neodymowe

Co to są magnesy neodymowe? Zacząłeś szukać silnych neodymowych magnesów o średnicy 10 mm? Wykaz wszystkich dostępnych towarów znajduje się na spisie poniżej poznaj ofertę magnesów

magnes dla poszukiwaczy F200 GOLD z mocnym uchem bocznym i liną

Gdzie zakupić silny UM magnes do poszukiwań? Uchwyty z magnesów w szczelnej i trwałej obudowie ze stali nadają się wyśmienicie do używania w niesprzyjających warunkach pogodowych, w tym również na śniegu i w deszczu zobacz ofertę

magnesy z uchwytem

Magnetyczne uchwyty mogą być stosowane do ułatwienia procesów produkcyjnych, odkrywania podwodnych terenów lub do poszukiwania meteorów z kruszcu. Mocowania to śruba 3x [M10] duży udźwig sprawdź...

Gwarantujemy wysyłkę zamówienia z magnesami w dniu zakupu jeśli zlecenie złożone jest przed godziną 14:00 w dni robocze.

Dhit sp. z o.o.
Produkt na zamówienie Wysyłamy za 3-5 dni

MP 25x7x9 / N38 - magnes neodymowy pierścieniowy

magnes neodymowy pierścieniowy

Numer katalogowy 030195

GTIN: 5906301812128

5.00

Średnica

25 mm [±0,1 mm]

Średnica wewnętrzna Ø

7 mm [±0,1 mm]

Wysokość

9 mm [±0,1 mm]

Waga

30.54 g

Kierunek magnesowania

↑ osiowy

Udźwig

14.82 kg / 145.39 N

Indukcja magnetyczna

362.13 mT / 3621 Gs

Powłoka

[NiCuNi] nikiel

12.55 z VAT / szt. + cena za transport

10.20 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
10.20 ZŁ
12.55 ZŁ
cena od 60 szt.
9.59 ZŁ
11.79 ZŁ
cena od 250 szt.
8.98 ZŁ
11.04 ZŁ
Chcesz lepszą cenę?

Skontaktuj się z nami telefonicznie +48 888 99 98 98 albo napisz przez formularz kontaktowy w sekcji kontakt.
Parametry oraz wygląd magnesów neodymowych skontrolujesz dzięki naszemu narzędziu online do obliczeń.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

MP 25x7x9 / N38 - magnes neodymowy pierścieniowy

Specyfikacja / charakterystyka MP 25x7x9 / N38 - magnes neodymowy pierścieniowy

właściwości
właściwości wartości
Nr kat. 030195
GTIN 5906301812128
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica 25 mm [±0,1 mm]
Średnica wewnętrzna Ø 7 mm [±0,1 mm]
Wysokość 9 mm [±0,1 mm]
Waga 30.54 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 14.82 kg / 145.39 N
Indukcja magnetyczna ~ ? 362.13 mT / 3621 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MP 25x7x9 / N38 - magnes neodymowy pierścieniowy
właściwości wartości jednostki
remanencja Br [Min. - Max.] ? 12.2-12.6 kGs
remanencja Br [Min. - Max.] ? 1220-1260 T
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [Min. - Max.] ? 36-38 BH max MGOe
gęstość energii [Min. - Max.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Curie Temperatura TC 312 - 380 °C
Curie Temperatura TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅Cm
Siła wyginania 250 Mpa
Wytrzymałość na ściskanie 1000~1100 Mpa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 106 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu - parametry techniczne

Niniejsze informacje są wynik kalkulacji matematycznej. Wartości bazują na modelach dla klasy NdFeB. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MP 25x7x9 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg) Status ryzyka
0 mm 5777 Gs
577.7 mT
14.82 kg / 14820.0 g
145.4 N
miażdżący
1 mm 5310 Gs
531.0 mT
12.52 kg / 12519.6 g
122.8 N
miażdżący
2 mm 4846 Gs
484.6 mT
10.43 kg / 10425.5 g
102.3 N
miażdżący
3 mm 4397 Gs
439.7 mT
8.59 kg / 8586.1 g
84.2 N
uwaga
5 mm 3576 Gs
357.6 mT
5.68 kg / 5678.0 g
55.7 N
uwaga
10 mm 2073 Gs
207.3 mT
1.91 kg / 1907.5 g
18.7 N
niskie ryzyko
15 mm 1231 Gs
123.1 mT
0.67 kg / 673.1 g
6.6 N
niskie ryzyko
20 mm 773 Gs
77.3 mT
0.27 kg / 265.0 g
2.6 N
niskie ryzyko
30 mm 356 Gs
35.6 mT
0.06 kg / 56.2 g
0.6 N
niskie ryzyko
50 mm 115 Gs
11.5 mT
0.01 kg / 5.9 g
0.1 N
niskie ryzyko
Table 2: Równoległa siła obsunięcia (ściana)
MP 25x7x9 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)
0 mm Stal (~0.2) 2.96 kg / 2964.0 g
29.1 N
1 mm Stal (~0.2) 2.50 kg / 2504.0 g
24.6 N
2 mm Stal (~0.2) 2.09 kg / 2086.0 g
20.5 N
3 mm Stal (~0.2) 1.72 kg / 1718.0 g
16.9 N
5 mm Stal (~0.2) 1.14 kg / 1136.0 g
11.1 N
10 mm Stal (~0.2) 0.38 kg / 382.0 g
3.7 N
15 mm Stal (~0.2) 0.13 kg / 134.0 g
1.3 N
20 mm Stal (~0.2) 0.05 kg / 54.0 g
0.5 N
30 mm Stal (~0.2) 0.01 kg / 12.0 g
0.1 N
50 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 25x7x9 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
4.45 kg / 4446.0 g
43.6 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
2.96 kg / 2964.0 g
29.1 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
1.48 kg / 1482.0 g
14.5 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
7.41 kg / 7410.0 g
72.7 N
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 25x7x9 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
5%
0.74 kg / 741.0 g
7.3 N
1 mm
13%
1.85 kg / 1852.5 g
18.2 N
2 mm
25%
3.71 kg / 3705.0 g
36.3 N
5 mm
63%
9.26 kg / 9262.5 g
90.9 N
10 mm
100%
14.82 kg / 14820.0 g
145.4 N
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MP 25x7x9 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 14.82 kg / 14820.0 g
145.4 N
OK
40 °C -2.2% 14.49 kg / 14494.0 g
142.2 N
OK
60 °C -4.4% 14.17 kg / 14167.9 g
139.0 N
OK
80 °C -6.6% 13.84 kg / 13841.9 g
135.8 N
100 °C -28.8% 10.55 kg / 10551.8 g
103.5 N
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 25x7x9 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 74.73 kg / 74732 g
733.1 N
6 082 Gs
N/A
1 mm 68.86 kg / 68859 g
675.5 N
11 091 Gs
61.97 kg / 61973 g
608.0 N
~0 Gs
2 mm 63.13 kg / 63132 g
619.3 N
10 620 Gs
56.82 kg / 56819 g
557.4 N
~0 Gs
3 mm 57.70 kg / 57697 g
566.0 N
10 153 Gs
51.93 kg / 51927 g
509.4 N
~0 Gs
5 mm 47.77 kg / 47770 g
468.6 N
9 238 Gs
42.99 kg / 42993 g
421.8 N
~0 Gs
10 mm 28.63 kg / 28632 g
280.9 N
7 152 Gs
25.77 kg / 25769 g
252.8 N
~0 Gs
20 mm 9.62 kg / 9619 g
94.4 N
4 145 Gs
8.66 kg / 8657 g
84.9 N
~0 Gs
50 mm 0.59 kg / 587 g
5.8 N
1 024 Gs
0.53 kg / 528 g
5.2 N
~0 Gs
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 25x7x9 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 17.0 cm
Implant słuchowy 10 Gs (1.0 mT) 13.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 10.5 cm
Urządzenie mobilne 40 Gs (4.0 mT) 8.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 7.5 cm
Karta płatnicza 400 Gs (40.0 mT) 3.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.5 cm
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MP 25x7x9 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 23.94 km/h
(6.65 m/s)
0.68 J
30 mm 38.57 km/h
(10.71 m/s)
1.75 J
50 mm 49.69 km/h
(13.80 m/s)
2.91 J
100 mm 70.25 km/h
(19.52 m/s)
5.82 J
Tabela 9: Trwałość powłoki antykorozyjnej
MP 25x7x9 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Table 10: Dane elektryczne (Flux)
MP 25x7x9 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 22 495 Mx 225.0 µWb
Współczynnik Pc 1.05 Wysoki (Stabilny)
Tabela 11: Fizyka poszukiwań podwodnych
MP 25x7x9 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 14.82 kg Standard
Woda (dno rzeki) 16.97 kg
(+2.15 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na Ścianie (Ześlizg)

*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.

2. Wpływ Grubości Blachy

*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.

3. Wytrzymałość Temperaturowa

*Dla materiału N38 granica bezpieczeństwa to 80°C.

Przelicznik magnesów
Udźwig magnesu

Indukcja magnetyczna
Jak rozdzielać?

Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.

STAY
MOVE
Zasady Bezpieczeństwa
Elektronika

Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.

Rozruszniki Serca

Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.

Nie dla dzieci

Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.

Kruchy materiał

Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.

Do czego użyć tego magnesu?

Sprawdzone zastosowania dla wymiaru 15x10x2 mm

Elektronika i Czujniki

Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.

Modelarstwo i Druk 3D

Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.

Meble i Fronty

Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.

Inne oferty

Magnes w kształcie pierścienia MP 25x7x9 / N38 jest stworzony do trwałego montażu, tam gdzie klej może zawieść lub być niewystarczający. Dzięki otworowi (często pod wkręt), ten model umożliwia łatwe przykręcenie do drewna, ściany, plastiku czy metalu. Produkt ten o sile 14.82 kg świetnie sprawdza się jako zatrzask drzwiowy, uchwyt głośnikowy lub element dystansowy w urządzeniach.
To kluczowa kwestia przy pracy z modelem MP 25x7x9 / N38. Magnesy neodymowe są spiekiem ceramicznym, co oznacza, że są bardzo kruche i nieelastyczne. Podczas dokręcania śruby należy zachować ogromne wyczucie. Zalecamy dokręcanie ręczne śrubokrętem, a nie wkrętarką udarową, ponieważ zbyt mocny docisk spowoduje pęknięcie pierścienia. Płaski łeb śruby powinien równomiernie dociskać magnes. Pamiętaj: pęknięcie przy montażu wynika z właściwości materiału, a nie wady produktu.
Magnesy te są pokryte standardową powłoką Ni-Cu-Ni, która chroni je w warunkach pokojowych, ale nie zapewnia pełnej wodoodporności. W miejscu otworu montażowego powłoka jest cieńsza i łatwo ją zarysować przy dokręcaniu śruby, co stanie się ogniskiem korozji. Produkt ten dedykowany jest do użytku wewnątrz budynków. Do zastosowań zewnętrznych zalecamy wybór magnesów w hermetycznej obudowie lub dodatkowe zabezpieczenie lakierem.
Średnica otworu wewnętrznego determinuje maksymalny rozmiar elementu montażowego. Dla magnesów z prostym otworem, łeb stożkowy może działać jak klin i rozsadzić magnes. Estetyczny montaż wymaga dobrania odpowiedniej wielkości łba.
Model ten charakteryzuje się wymiarami Ø25x9 mm oraz wagą 30.54 g. Siła przyciągania tego modelu to imponujące 14.82 kg, co w przeliczeniu na niutony daje wartość 145.39 N. Średnica otworu montażowego to precyzyjnie 7 mm.
Magnesy te są magnesowane osiowo (wzdłuż grubości), co oznacza, że jeden płaski bok jest biegunem N, a drugi S. Jeśli chcesz, aby dwa takie magnesy przyciągały się do siebie płaskimi stronami, musisz połączyć je przeciwnymi biegunami (N do S). Przy zamówieniu większej ilości magnesy są zazwyczaj pakowane w słupki, gdzie są już naturalnie sparowane.

Wady oraz zalety magnesów neodymowych NdFeB.

Warto zwrócić uwagę, że obok ekstremalnej mocy, magnesy te wyróżniają się następującymi zaletami:

  • Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
  • Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
  • Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
  • Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
  • Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
  • Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Warto znać też słabe strony magnesów neodymowych:

  • Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
  • Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Maksymalna moc trzymania magnesuco ma na to wpływ?

Informacja o udźwigu to rezultat pomiaru dla optymalnej konfiguracji, obejmującej:

  • przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
  • o przekroju nie mniejszej niż 10 mm
  • z powierzchnią oczyszczoną i gładką
  • przy zerowej szczelinie (bez zanieczyszczeń)
  • podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
  • w neutralnych warunkach termicznych

Udźwig w warunkach rzeczywistych – czynniki

Na efektywny udźwig mają wpływ konkretne warunki, głównie (od najważniejszych):

  • Szczelina – występowanie ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
  • Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
  • Grubość stali – za chuda płyta nie zamyka strumienia, przez co część mocy ucieka w powietrzu.
  • Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
  • Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
  • Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.

* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje siłę trzymania.

Wady oraz zalety magnesów neodymowych NdFeB.

Warto zwrócić uwagę, że obok ekstremalnej mocy, magnesy te wyróżniają się następującymi zaletami:

  • Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
  • Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
  • Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
  • Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
  • Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do konkretnego projektu.
  • Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Warto znać też słabe strony magnesów neodymowych:

  • Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
  • Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
  • Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Maksymalna moc trzymania magnesuco ma na to wpływ?

Informacja o udźwigu to rezultat pomiaru dla optymalnej konfiguracji, obejmującej:

  • przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
  • o przekroju nie mniejszej niż 10 mm
  • z powierzchnią oczyszczoną i gładką
  • przy zerowej szczelinie (bez zanieczyszczeń)
  • podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
  • w neutralnych warunkach termicznych

Udźwig w warunkach rzeczywistych – czynniki

Na efektywny udźwig mają wpływ konkretne warunki, głównie (od najważniejszych):

  • Szczelina – występowanie ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
  • Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
  • Grubość stali – za chuda płyta nie zamyka strumienia, przez co część mocy ucieka w powietrzu.
  • Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
  • Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
  • Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.

* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje siłę trzymania.

Środki ostrożności podczas pracy przy magnesach z neodymem

Zagrożenie dla najmłodszych

Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.

Kruchość materiału

Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.

Implanty medyczne

Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.

Dla uczulonych

Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.

Ryzyko złamań

Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!

Bezpieczna praca

Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.

Zakaz obróbki

Proszek powstający podczas obróbki magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.

Wpływ na smartfony

Intensywne promieniowanie magnetyczne zakłóca działanie czujników w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.

Karty i dyski

Bardzo silne oddziaływanie może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.

Utrata mocy w cieple

Typowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.

Uwaga!

Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98