MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030191
GTIN/EAN: 5906301812081
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
21.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.49 kg / 102.90 N
Indukcja magnetyczna
334.09 mT / 3341 Gs
Powłoka
[NiCuNi] nikiel
13.53 ZŁ z VAT / szt. + cena za transport
11.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie skontaktuj się korzystając z
formularz
przez naszą stronę.
Właściwości oraz budowę elementów magnetycznych skontrolujesz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030191 |
| GTIN/EAN | 5906301812081 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 21.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.49 kg / 102.90 N |
| Indukcja magnetyczna ~ ? | 334.09 mT / 3341 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Przedstawione wartości stanowią bezpośredni efekt symulacji matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MP 25x13x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
10.49 kg / 10490.0 g
102.9 N
|
niebezpieczny! |
| 1 mm |
5310 Gs
531.0 mT
|
8.86 kg / 8861.7 g
86.9 N
|
średnie ryzyko |
| 2 mm |
4846 Gs
484.6 mT
|
7.38 kg / 7379.4 g
72.4 N
|
średnie ryzyko |
| 3 mm |
4397 Gs
439.7 mT
|
6.08 kg / 6077.4 g
59.6 N
|
średnie ryzyko |
| 5 mm |
3576 Gs
357.6 mT
|
4.02 kg / 4019.0 g
39.4 N
|
średnie ryzyko |
| 10 mm |
2073 Gs
207.3 mT
|
1.35 kg / 1350.2 g
13.2 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.48 kg / 476.4 g
4.7 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.19 kg / 187.6 g
1.8 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.04 kg / 39.8 g
0.4 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 4.1 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 25x13x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.10 kg / 2098.0 g
20.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 1772.0 g
17.4 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 1476.0 g
14.5 N
|
| 3 mm | Stal (~0.2) |
1.22 kg / 1216.0 g
11.9 N
|
| 5 mm | Stal (~0.2) |
0.80 kg / 804.0 g
7.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 270.0 g
2.6 N
|
| 15 mm | Stal (~0.2) |
0.10 kg / 96.0 g
0.9 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 38.0 g
0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 25x13x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.15 kg / 3147.0 g
30.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.10 kg / 2098.0 g
20.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.05 kg / 1049.0 g
10.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.25 kg / 5245.0 g
51.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 25x13x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 524.5 g
5.1 N
|
| 1 mm |
|
1.31 kg / 1311.3 g
12.9 N
|
| 2 mm |
|
2.62 kg / 2622.5 g
25.7 N
|
| 5 mm |
|
6.56 kg / 6556.3 g
64.3 N
|
| 10 mm |
|
10.49 kg / 10490.0 g
102.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MP 25x13x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.49 kg / 10490.0 g
102.9 N
|
OK |
| 40 °C | -2.2% |
10.26 kg / 10259.2 g
100.6 N
|
OK |
| 60 °C | -4.4% |
10.03 kg / 10028.4 g
98.4 N
|
OK |
| 80 °C | -6.6% |
9.80 kg / 9797.7 g
96.1 N
|
|
| 100 °C | -28.8% |
7.47 kg / 7468.9 g
73.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 25x13x8 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
77.07 kg / 77067 g
756.0 N
6 082 Gs
|
N/A |
| 1 mm |
71.01 kg / 71011 g
696.6 N
11 091 Gs
|
63.91 kg / 63910 g
627.0 N
~0 Gs
|
| 2 mm |
65.10 kg / 65105 g
638.7 N
10 620 Gs
|
58.59 kg / 58594 g
574.8 N
~0 Gs
|
| 3 mm |
59.50 kg / 59500 g
583.7 N
10 153 Gs
|
53.55 kg / 53550 g
525.3 N
~0 Gs
|
| 5 mm |
49.26 kg / 49263 g
483.3 N
9 238 Gs
|
44.34 kg / 44336 g
434.9 N
~0 Gs
|
| 10 mm |
29.53 kg / 29527 g
289.7 N
7 152 Gs
|
26.57 kg / 26574 g
260.7 N
~0 Gs
|
| 20 mm |
9.92 kg / 9919 g
97.3 N
4 145 Gs
|
8.93 kg / 8927 g
87.6 N
~0 Gs
|
| 50 mm |
0.61 kg / 605 g
5.9 N
1 024 Gs
|
0.54 kg / 545 g
5.3 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MP 25x13x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MP 25x13x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.01 km/h
(6.67 m/s)
|
0.48 J | |
| 30 mm |
38.68 km/h
(10.75 m/s)
|
1.24 J | |
| 50 mm |
49.84 km/h
(13.84 m/s)
|
2.06 J | |
| 100 mm |
70.46 km/h
(19.57 m/s)
|
4.12 J |
Tabela 9: Parametry powłoki (trwałość)
MP 25x13x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 25x13x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 118 Mx | 231.2 µWb |
| Współczynnik Pc | 1.04 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 25x13x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.49 kg | Standard |
| Woda (dno rzeki) |
12.01 kg
(+1.52 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.04
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- z wykorzystaniem płyty ze miękkiej stali, która służy jako element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Ryzyko uczulenia
Część populacji wykazuje nadwrażliwość na nikiel, którym powlekane są standardowo nasze produkty. Częste dotykanie może skutkować zaczerwienienie skóry. Sugerujemy używanie rękawiczek ochronnych.
Niebezpieczeństwo dla rozruszników
Osoby z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić działanie urządzenia ratującego życie.
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Kruchy spiek
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Zagrożenie dla najmłodszych
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Siła zgniatająca
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Zagrożenie dla elektroniki
Ekstremalne pole magnetyczne może skasować dane na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
