MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030191
GTIN/EAN: 5906301812081
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
21.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.49 kg / 102.90 N
Indukcja magnetyczna
334.09 mT / 3341 Gs
Powłoka
[NiCuNi] nikiel
13.53 ZŁ z VAT / szt. + cena za transport
11.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo pisz przez
formularz zgłoszeniowy
w sekcji kontakt.
Siłę a także wygląd magnesów neodymowych testujesz u nas w
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane - MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 25x13x8 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030191 |
| GTIN/EAN | 5906301812081 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 21.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.49 kg / 102.90 N |
| Indukcja magnetyczna ~ ? | 334.09 mT / 3341 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Przedstawione dane są wynik analizy fizycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MP 25x13x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
krytyczny poziom |
| 1 mm |
5310 Gs
531.0 mT
|
8.86 kg / 19.54 lbs
8861.7 g / 86.9 N
|
uwaga |
| 2 mm |
4846 Gs
484.6 mT
|
7.38 kg / 16.27 lbs
7379.4 g / 72.4 N
|
uwaga |
| 3 mm |
4397 Gs
439.7 mT
|
6.08 kg / 13.40 lbs
6077.4 g / 59.6 N
|
uwaga |
| 5 mm |
3576 Gs
357.6 mT
|
4.02 kg / 8.86 lbs
4019.0 g / 39.4 N
|
uwaga |
| 10 mm |
2073 Gs
207.3 mT
|
1.35 kg / 2.98 lbs
1350.2 g / 13.2 N
|
bezpieczny |
| 15 mm |
1231 Gs
123.1 mT
|
0.48 kg / 1.05 lbs
476.4 g / 4.7 N
|
bezpieczny |
| 20 mm |
773 Gs
77.3 mT
|
0.19 kg / 0.41 lbs
187.6 g / 1.8 N
|
bezpieczny |
| 30 mm |
356 Gs
35.6 mT
|
0.04 kg / 0.09 lbs
39.8 g / 0.4 N
|
bezpieczny |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 25x13x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.10 kg / 4.63 lbs
2098.0 g / 20.6 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.91 lbs
1772.0 g / 17.4 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 3.25 lbs
1476.0 g / 14.5 N
|
| 3 mm | Stal (~0.2) |
1.22 kg / 2.68 lbs
1216.0 g / 11.9 N
|
| 5 mm | Stal (~0.2) |
0.80 kg / 1.77 lbs
804.0 g / 7.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.10 kg / 0.21 lbs
96.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 25x13x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.15 kg / 6.94 lbs
3147.0 g / 30.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.10 kg / 4.63 lbs
2098.0 g / 20.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.05 kg / 2.31 lbs
1049.0 g / 10.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.25 kg / 11.56 lbs
5245.0 g / 51.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 25x13x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 1.16 lbs
524.5 g / 5.1 N
|
| 1 mm |
|
1.31 kg / 2.89 lbs
1311.3 g / 12.9 N
|
| 2 mm |
|
2.62 kg / 5.78 lbs
2622.5 g / 25.7 N
|
| 3 mm |
|
3.93 kg / 8.67 lbs
3933.8 g / 38.6 N
|
| 5 mm |
|
6.56 kg / 14.45 lbs
6556.3 g / 64.3 N
|
| 10 mm |
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
| 11 mm |
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
| 12 mm |
|
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MP 25x13x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.49 kg / 23.13 lbs
10490.0 g / 102.9 N
|
OK |
| 40 °C | -2.2% |
10.26 kg / 22.62 lbs
10259.2 g / 100.6 N
|
OK |
| 60 °C | -4.4% |
10.03 kg / 22.11 lbs
10028.4 g / 98.4 N
|
OK |
| 80 °C | -6.6% |
9.80 kg / 21.60 lbs
9797.7 g / 96.1 N
|
|
| 100 °C | -28.8% |
7.47 kg / 16.47 lbs
7468.9 g / 73.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 25x13x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
77.07 kg / 169.90 lbs
6 082 Gs
|
11.56 kg / 25.49 lbs
11560 g / 113.4 N
|
N/A |
| 1 mm |
71.01 kg / 156.55 lbs
11 091 Gs
|
10.65 kg / 23.48 lbs
10652 g / 104.5 N
|
63.91 kg / 140.90 lbs
~0 Gs
|
| 2 mm |
65.10 kg / 143.53 lbs
10 620 Gs
|
9.77 kg / 21.53 lbs
9766 g / 95.8 N
|
58.59 kg / 129.18 lbs
~0 Gs
|
| 3 mm |
59.50 kg / 131.17 lbs
10 153 Gs
|
8.92 kg / 19.68 lbs
8925 g / 87.6 N
|
53.55 kg / 118.06 lbs
~0 Gs
|
| 5 mm |
49.26 kg / 108.61 lbs
9 238 Gs
|
7.39 kg / 16.29 lbs
7389 g / 72.5 N
|
44.34 kg / 97.74 lbs
~0 Gs
|
| 10 mm |
29.53 kg / 65.10 lbs
7 152 Gs
|
4.43 kg / 9.76 lbs
4429 g / 43.4 N
|
26.57 kg / 58.59 lbs
~0 Gs
|
| 20 mm |
9.92 kg / 21.87 lbs
4 145 Gs
|
1.49 kg / 3.28 lbs
1488 g / 14.6 N
|
8.93 kg / 19.68 lbs
~0 Gs
|
| 50 mm |
0.61 kg / 1.33 lbs
1 024 Gs
|
0.09 kg / 0.20 lbs
91 g / 0.9 N
|
0.54 kg / 1.20 lbs
~0 Gs
|
| 60 mm |
0.29 kg / 0.64 lbs
712 Gs
|
0.04 kg / 0.10 lbs
44 g / 0.4 N
|
0.26 kg / 0.58 lbs
~0 Gs
|
| 70 mm |
0.15 kg / 0.34 lbs
514 Gs
|
0.02 kg / 0.05 lbs
23 g / 0.2 N
|
0.14 kg / 0.30 lbs
~0 Gs
|
| 80 mm |
0.08 kg / 0.19 lbs
383 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.11 lbs
293 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.07 lbs
230 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MP 25x13x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 25x13x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.01 km/h
(6.67 m/s)
|
0.48 J | |
| 30 mm |
38.68 km/h
(10.75 m/s)
|
1.24 J | |
| 50 mm |
49.84 km/h
(13.84 m/s)
|
2.06 J | |
| 100 mm |
70.46 km/h
(19.57 m/s)
|
4.12 J |
Tabela 9: Parametry powłoki (trwałość)
MP 25x13x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 25x13x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 118 Mx | 231.2 µWb |
| Współczynnik Pc | 1.04 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 25x13x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.49 kg | Standard |
| Woda (dno rzeki) |
12.01 kg
(+1.52 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.04
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi tylko ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Najwyższa nośność magnesu – co się na to składa?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- której grubość wynosi ok. 10 mm
- z powierzchnią oczyszczoną i gładką
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w neutralnych warunkach termicznych
Czynniki determinujące udźwig w warunkach realnych
- Szczelina powietrzna (między magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) może spowodować drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Co więcej, nawet drobny odstęp między magnesem, a blachą redukuje nośność.
BHP przy magnesach
Ostrożność wymagana
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Ryzyko zmiażdżenia
Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa przyciągające się elementy.
Nie zbliżaj do komputera
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Nadwrażliwość na metale
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
To nie jest zabawka
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Kompas i GPS
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Nie wierć w magnesach
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Ryzyko pęknięcia
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
