MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030190
GTIN/EAN: 5906301812074
Średnica
25 mm [±0,1 mm]
Średnica wewnętrzna Ø
13 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
10.74 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.14 kg / 40.57 N
Indukcja magnetyczna
188.92 mT / 1889 Gs
Powłoka
[NiCuNi] nikiel
6.77 ZŁ z VAT / szt. + cena za transport
5.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Zadzwoń i zapytaj
+48 888 99 98 98
albo daj znać korzystając z
formularz zapytania
na naszej stronie.
Masę oraz budowę magnesów neodymowych wyliczysz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 25x13x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030190 |
| GTIN/EAN | 5906301812074 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 25 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 13 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 10.74 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.14 kg / 40.57 N |
| Indukcja magnetyczna ~ ? | 188.92 mT / 1889 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Poniższe informacje stanowią wynik symulacji fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą się różnić. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
MP 25x13x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5777 Gs
577.7 mT
|
4.14 kg / 4140.0 g
40.6 N
|
średnie ryzyko |
| 1 mm |
5310 Gs
531.0 mT
|
3.50 kg / 3497.4 g
34.3 N
|
średnie ryzyko |
| 2 mm |
4846 Gs
484.6 mT
|
2.91 kg / 2912.4 g
28.6 N
|
średnie ryzyko |
| 3 mm |
4397 Gs
439.7 mT
|
2.40 kg / 2398.5 g
23.5 N
|
średnie ryzyko |
| 5 mm |
3576 Gs
357.6 mT
|
1.59 kg / 1586.2 g
15.6 N
|
niskie ryzyko |
| 10 mm |
2073 Gs
207.3 mT
|
0.53 kg / 532.9 g
5.2 N
|
niskie ryzyko |
| 15 mm |
1231 Gs
123.1 mT
|
0.19 kg / 188.0 g
1.8 N
|
niskie ryzyko |
| 20 mm |
773 Gs
77.3 mT
|
0.07 kg / 74.0 g
0.7 N
|
niskie ryzyko |
| 30 mm |
356 Gs
35.6 mT
|
0.02 kg / 15.7 g
0.2 N
|
niskie ryzyko |
| 50 mm |
115 Gs
11.5 mT
|
0.00 kg / 1.6 g
0.0 N
|
niskie ryzyko |
MP 25x13x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.83 kg / 828.0 g
8.1 N
|
| 1 mm | Stal (~0.2) |
0.70 kg / 700.0 g
6.9 N
|
| 2 mm | Stal (~0.2) |
0.58 kg / 582.0 g
5.7 N
|
| 3 mm | Stal (~0.2) |
0.48 kg / 480.0 g
4.7 N
|
| 5 mm | Stal (~0.2) |
0.32 kg / 318.0 g
3.1 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 106.0 g
1.0 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 38.0 g
0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 25x13x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.24 kg / 1242.0 g
12.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.83 kg / 828.0 g
8.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.41 kg / 414.0 g
4.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.07 kg / 2070.0 g
20.3 N
|
MP 25x13x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.41 kg / 414.0 g
4.1 N
|
| 1 mm |
|
1.04 kg / 1035.0 g
10.2 N
|
| 2 mm |
|
2.07 kg / 2070.0 g
20.3 N
|
| 5 mm |
|
4.14 kg / 4140.0 g
40.6 N
|
| 10 mm |
|
4.14 kg / 4140.0 g
40.6 N
|
MP 25x13x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.14 kg / 4140.0 g
40.6 N
|
OK |
| 40 °C | -2.2% |
4.05 kg / 4048.9 g
39.7 N
|
OK |
| 60 °C | -4.4% |
3.96 kg / 3957.8 g
38.8 N
|
OK |
| 80 °C | -6.6% |
3.87 kg / 3866.8 g
37.9 N
|
|
| 100 °C | -28.8% |
2.95 kg / 2947.7 g
28.9 N
|
MP 25x13x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
83.66 kg / 83661 g
820.7 N
6 082 Gs
|
N/A |
| 1 mm |
77.09 kg / 77087 g
756.2 N
11 091 Gs
|
69.38 kg / 69378 g
680.6 N
~0 Gs
|
| 2 mm |
70.68 kg / 70675 g
693.3 N
10 620 Gs
|
63.61 kg / 63608 g
624.0 N
~0 Gs
|
| 3 mm |
64.59 kg / 64591 g
633.6 N
10 153 Gs
|
58.13 kg / 58131 g
570.3 N
~0 Gs
|
| 5 mm |
53.48 kg / 53478 g
524.6 N
9 238 Gs
|
48.13 kg / 48130 g
472.2 N
~0 Gs
|
| 10 mm |
32.05 kg / 32053 g
314.4 N
7 152 Gs
|
28.85 kg / 28848 g
283.0 N
~0 Gs
|
| 20 mm |
10.77 kg / 10768 g
105.6 N
4 145 Gs
|
9.69 kg / 9691 g
95.1 N
~0 Gs
|
| 50 mm |
0.66 kg / 657 g
6.4 N
1 024 Gs
|
0.59 kg / 592 g
5.8 N
~0 Gs
|
MP 25x13x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
MP 25x13x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.33 km/h
(5.93 m/s)
|
0.19 J | |
| 30 mm |
34.38 km/h
(9.55 m/s)
|
0.49 J | |
| 50 mm |
44.29 km/h
(12.30 m/s)
|
0.81 J | |
| 100 mm |
62.62 km/h
(17.39 m/s)
|
1.62 J |
MP 25x13x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 25x13x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 861 Mx | 248.6 µWb |
| Współczynnik Pc | 1.02 | Wysoki (Stabilny) |
MP 25x13x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.14 kg | Standard |
| Woda (dno rzeki) |
4.74 kg
(+0.60 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.02
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- której grubość to min. 10 mm
- o wypolerowanej powierzchni kontaktu
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Nie zbliżaj do komputera
Potężne oddziaływanie może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
Przegrzanie magnesu
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i siłę przyciągania.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Uwaga na odpryski
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Wpływ na smartfony
Ważna informacja: magnesy neodymowe generują pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Ryzyko połknięcia
Zawsze zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Ryzyko uczulenia
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Bezpieczna praca
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
