MP 20x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030187
GTIN/EAN: 5906301812043
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.79 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.14 kg / 30.79 N
Indukcja magnetyczna
178.11 mT / 1781 Gs
Powłoka
[NiCuNi] nikiel
3.59 ZŁ z VAT / szt. + cena za transport
2.92 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie zostaw wiadomość korzystając z
nasz formularz online
na stronie kontaktowej.
Masę i budowę magnesów skontrolujesz w naszym
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry - MP 20x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030187 |
| GTIN/EAN | 5906301812043 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.79 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.14 kg / 30.79 N |
| Indukcja magnetyczna ~ ? | 178.11 mT / 1781 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Niniejsze wartości są rezultat kalkulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MP 20x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1531 Gs
153.1 mT
|
3.14 kg / 3140.0 g
30.8 N
|
uwaga |
| 1 mm |
1457 Gs
145.7 mT
|
2.84 kg / 2843.2 g
27.9 N
|
uwaga |
| 2 mm |
1352 Gs
135.2 mT
|
2.45 kg / 2446.6 g
24.0 N
|
uwaga |
| 3 mm |
1227 Gs
122.7 mT
|
2.02 kg / 2016.2 g
19.8 N
|
uwaga |
| 5 mm |
963 Gs
96.3 mT
|
1.24 kg / 1241.9 g
12.2 N
|
bezpieczny |
| 10 mm |
465 Gs
46.5 mT
|
0.29 kg / 289.3 g
2.8 N
|
bezpieczny |
| 15 mm |
228 Gs
22.8 mT
|
0.07 kg / 69.7 g
0.7 N
|
bezpieczny |
| 20 mm |
122 Gs
12.2 mT
|
0.02 kg / 20.0 g
0.2 N
|
bezpieczny |
| 30 mm |
45 Gs
4.5 mT
|
0.00 kg / 2.7 g
0.0 N
|
bezpieczny |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MP 20x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.63 kg / 628.0 g
6.2 N
|
| 1 mm | Stal (~0.2) |
0.57 kg / 568.0 g
5.6 N
|
| 2 mm | Stal (~0.2) |
0.49 kg / 490.0 g
4.8 N
|
| 3 mm | Stal (~0.2) |
0.40 kg / 404.0 g
4.0 N
|
| 5 mm | Stal (~0.2) |
0.25 kg / 248.0 g
2.4 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 58.0 g
0.6 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 20x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.94 kg / 942.0 g
9.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.63 kg / 628.0 g
6.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.31 kg / 314.0 g
3.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.57 kg / 1570.0 g
15.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 20x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.31 kg / 314.0 g
3.1 N
|
| 1 mm |
|
0.79 kg / 785.0 g
7.7 N
|
| 2 mm |
|
1.57 kg / 1570.0 g
15.4 N
|
| 5 mm |
|
3.14 kg / 3140.0 g
30.8 N
|
| 10 mm |
|
3.14 kg / 3140.0 g
30.8 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MP 20x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.14 kg / 3140.0 g
30.8 N
|
OK |
| 40 °C | -2.2% |
3.07 kg / 3070.9 g
30.1 N
|
OK |
| 60 °C | -4.4% |
3.00 kg / 3001.8 g
29.4 N
|
|
| 80 °C | -6.6% |
2.93 kg / 2932.8 g
28.8 N
|
|
| 100 °C | -28.8% |
2.24 kg / 2235.7 g
21.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MP 20x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
3.71 kg / 3706 g
36.4 N
2 815 Gs
|
N/A |
| 1 mm |
3.55 kg / 3552 g
34.8 N
2 998 Gs
|
3.20 kg / 3197 g
31.4 N
~0 Gs
|
| 2 mm |
3.36 kg / 3356 g
32.9 N
2 915 Gs
|
3.02 kg / 3021 g
29.6 N
~0 Gs
|
| 3 mm |
3.13 kg / 3132 g
30.7 N
2 815 Gs
|
2.82 kg / 2818 g
27.6 N
~0 Gs
|
| 5 mm |
2.63 kg / 2635 g
25.8 N
2 582 Gs
|
2.37 kg / 2371 g
23.3 N
~0 Gs
|
| 10 mm |
1.47 kg / 1466 g
14.4 N
1 926 Gs
|
1.32 kg / 1319 g
12.9 N
~0 Gs
|
| 20 mm |
0.34 kg / 342 g
3.4 N
930 Gs
|
0.31 kg / 307 g
3.0 N
~0 Gs
|
| 50 mm |
0.01 kg / 8 g
0.1 N
143 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 20x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 20x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.90 km/h
(6.36 m/s)
|
0.14 J | |
| 30 mm |
37.58 km/h
(10.44 m/s)
|
0.37 J | |
| 50 mm |
48.50 km/h
(13.47 m/s)
|
0.62 J | |
| 100 mm |
68.58 km/h
(19.05 m/s)
|
1.23 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 20x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MP 20x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 044 Mx | 50.4 µWb |
| Współczynnik Pc | 0.20 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 20x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.14 kg | Standard |
| Woda (dno rzeki) |
3.60 kg
(+0.46 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa tylko ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.20
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o grubości wynoszącej minimum 10 mm
- z płaszczyzną idealnie równą
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina – występowanie ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość stali – za chuda płyta nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Środki ostrożności podczas pracy przy magnesach z neodymem
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zagrożenie fizyczne
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Wpływ na zdrowie
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Ryzyko pęknięcia
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Świadome użytkowanie
Używaj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Obróbka mechaniczna
Pył generowany podczas szlifowania magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ochrona urządzeń
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Zagrożenie dla najmłodszych
Te produkty magnetyczne nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Uszkodzenia czujników
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
