MP 20x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030187
GTIN/EAN: 5906301812043
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.79 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.14 kg / 30.79 N
Indukcja magnetyczna
178.11 mT / 1781 Gs
Powłoka
[NiCuNi] nikiel
3.59 ZŁ z VAT / szt. + cena za transport
2.92 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie napisz przez
formularz zgłoszeniowy
na naszej stronie.
Masę oraz wygląd magnesów skontrolujesz w naszym
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MP 20x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030187 |
| GTIN/EAN | 5906301812043 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.79 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.14 kg / 30.79 N |
| Indukcja magnetyczna ~ ? | 178.11 mT / 1781 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione dane stanowią rezultat symulacji fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MP 20x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1531 Gs
153.1 mT
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
średnie ryzyko |
| 1 mm |
1457 Gs
145.7 mT
|
2.84 kg / 6.27 lbs
2843.2 g / 27.9 N
|
średnie ryzyko |
| 2 mm |
1352 Gs
135.2 mT
|
2.45 kg / 5.39 lbs
2446.6 g / 24.0 N
|
średnie ryzyko |
| 3 mm |
1227 Gs
122.7 mT
|
2.02 kg / 4.44 lbs
2016.2 g / 19.8 N
|
średnie ryzyko |
| 5 mm |
963 Gs
96.3 mT
|
1.24 kg / 2.74 lbs
1241.9 g / 12.2 N
|
słaby uchwyt |
| 10 mm |
465 Gs
46.5 mT
|
0.29 kg / 0.64 lbs
289.3 g / 2.8 N
|
słaby uchwyt |
| 15 mm |
228 Gs
22.8 mT
|
0.07 kg / 0.15 lbs
69.7 g / 0.7 N
|
słaby uchwyt |
| 20 mm |
122 Gs
12.2 mT
|
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
słaby uchwyt |
| 30 mm |
45 Gs
4.5 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MP 20x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.63 kg / 1.38 lbs
628.0 g / 6.2 N
|
| 1 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
568.0 g / 5.6 N
|
| 2 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
490.0 g / 4.8 N
|
| 3 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| 5 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 20x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.94 kg / 2.08 lbs
942.0 g / 9.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.63 kg / 1.38 lbs
628.0 g / 6.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 20x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
|
| 1 mm |
|
0.79 kg / 1.73 lbs
785.0 g / 7.7 N
|
| 2 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
| 3 mm |
|
2.36 kg / 5.19 lbs
2355.0 g / 23.1 N
|
| 5 mm |
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
| 10 mm |
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
| 11 mm |
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
| 12 mm |
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MP 20x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
OK |
| 40 °C | -2.2% |
3.07 kg / 6.77 lbs
3070.9 g / 30.1 N
|
OK |
| 60 °C | -4.4% |
3.00 kg / 6.62 lbs
3001.8 g / 29.4 N
|
|
| 80 °C | -6.6% |
2.93 kg / 6.47 lbs
2932.8 g / 28.8 N
|
|
| 100 °C | -28.8% |
2.24 kg / 4.93 lbs
2235.7 g / 21.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 20x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.71 kg / 8.17 lbs
2 815 Gs
|
0.56 kg / 1.23 lbs
556 g / 5.5 N
|
N/A |
| 1 mm |
3.55 kg / 7.83 lbs
2 998 Gs
|
0.53 kg / 1.17 lbs
533 g / 5.2 N
|
3.20 kg / 7.05 lbs
~0 Gs
|
| 2 mm |
3.36 kg / 7.40 lbs
2 915 Gs
|
0.50 kg / 1.11 lbs
503 g / 4.9 N
|
3.02 kg / 6.66 lbs
~0 Gs
|
| 3 mm |
3.13 kg / 6.90 lbs
2 815 Gs
|
0.47 kg / 1.04 lbs
470 g / 4.6 N
|
2.82 kg / 6.21 lbs
~0 Gs
|
| 5 mm |
2.63 kg / 5.81 lbs
2 582 Gs
|
0.40 kg / 0.87 lbs
395 g / 3.9 N
|
2.37 kg / 5.23 lbs
~0 Gs
|
| 10 mm |
1.47 kg / 3.23 lbs
1 926 Gs
|
0.22 kg / 0.48 lbs
220 g / 2.2 N
|
1.32 kg / 2.91 lbs
~0 Gs
|
| 20 mm |
0.34 kg / 0.75 lbs
930 Gs
|
0.05 kg / 0.11 lbs
51 g / 0.5 N
|
0.31 kg / 0.68 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
143 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
90 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MP 20x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MP 20x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.90 km/h
(6.36 m/s)
|
0.14 J | |
| 30 mm |
37.58 km/h
(10.44 m/s)
|
0.37 J | |
| 50 mm |
48.50 km/h
(13.47 m/s)
|
0.62 J | |
| 100 mm |
68.58 km/h
(19.05 m/s)
|
1.23 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 20x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 20x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 044 Mx | 50.4 µWb |
| Współczynnik Pc | 0.20 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 20x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.14 kg | Standard |
| Woda (dno rzeki) |
3.60 kg
(+0.46 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.20
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (nikiel, Au, Ag) mają nowoczesny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się gładkością
- przy bezpośrednim styku (brak zanieczyszczeń)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Wpływ czynników na nośność magnesu w praktyce
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Ochrona oczu
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko uczulenia
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Kompas i GPS
Silne pole magnetyczne zakłóca funkcjonowanie kompasów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Zakaz obróbki
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Ochrona dłoni
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Utrata mocy w cieple
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Chronić przed dziećmi
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
