MP 20x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030187
GTIN/EAN: 5906301812043
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.79 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.14 kg / 30.79 N
Indukcja magnetyczna
178.11 mT / 1781 Gs
Powłoka
[NiCuNi] nikiel
3.59 ZŁ z VAT / szt. + cena za transport
2.92 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie pisz korzystając z
nasz formularz online
przez naszą stronę.
Masę i budowę magnesów obliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Dane techniczne produktu - MP 20x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030187 |
| GTIN/EAN | 5906301812043 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.79 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.14 kg / 30.79 N |
| Indukcja magnetyczna ~ ? | 178.11 mT / 1781 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Poniższe dane stanowią bezpośredni efekt analizy inżynierskiej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MP 20x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1531 Gs
153.1 mT
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
mocny |
| 1 mm |
1457 Gs
145.7 mT
|
2.84 kg / 6.27 lbs
2843.2 g / 27.9 N
|
mocny |
| 2 mm |
1352 Gs
135.2 mT
|
2.45 kg / 5.39 lbs
2446.6 g / 24.0 N
|
mocny |
| 3 mm |
1227 Gs
122.7 mT
|
2.02 kg / 4.44 lbs
2016.2 g / 19.8 N
|
mocny |
| 5 mm |
963 Gs
96.3 mT
|
1.24 kg / 2.74 lbs
1241.9 g / 12.2 N
|
bezpieczny |
| 10 mm |
465 Gs
46.5 mT
|
0.29 kg / 0.64 lbs
289.3 g / 2.8 N
|
bezpieczny |
| 15 mm |
228 Gs
22.8 mT
|
0.07 kg / 0.15 lbs
69.7 g / 0.7 N
|
bezpieczny |
| 20 mm |
122 Gs
12.2 mT
|
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
bezpieczny |
| 30 mm |
45 Gs
4.5 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
bezpieczny |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MP 20x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.63 kg / 1.38 lbs
628.0 g / 6.2 N
|
| 1 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
568.0 g / 5.6 N
|
| 2 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
490.0 g / 4.8 N
|
| 3 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| 5 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 20x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.94 kg / 2.08 lbs
942.0 g / 9.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.63 kg / 1.38 lbs
628.0 g / 6.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 20x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.31 kg / 0.69 lbs
314.0 g / 3.1 N
|
| 1 mm |
|
0.79 kg / 1.73 lbs
785.0 g / 7.7 N
|
| 2 mm |
|
1.57 kg / 3.46 lbs
1570.0 g / 15.4 N
|
| 3 mm |
|
2.36 kg / 5.19 lbs
2355.0 g / 23.1 N
|
| 5 mm |
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
| 10 mm |
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
| 11 mm |
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
| 12 mm |
|
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MP 20x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.14 kg / 6.92 lbs
3140.0 g / 30.8 N
|
OK |
| 40 °C | -2.2% |
3.07 kg / 6.77 lbs
3070.9 g / 30.1 N
|
OK |
| 60 °C | -4.4% |
3.00 kg / 6.62 lbs
3001.8 g / 29.4 N
|
|
| 80 °C | -6.6% |
2.93 kg / 6.47 lbs
2932.8 g / 28.8 N
|
|
| 100 °C | -28.8% |
2.24 kg / 4.93 lbs
2235.7 g / 21.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MP 20x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg) (N-N) |
|---|---|---|---|
| 0 mm |
3.71 kg / 8.17 lbs
2 815 Gs
|
0.56 kg / 1.23 lbs
556 g / 5.5 N
|
N/A |
| 1 mm |
3.55 kg / 7.83 lbs
2 998 Gs
|
0.53 kg / 1.17 lbs
533 g / 5.2 N
|
3.20 kg / 7.05 lbs
~0 Gs
|
| 2 mm |
3.36 kg / 7.40 lbs
2 915 Gs
|
0.50 kg / 1.11 lbs
503 g / 4.9 N
|
3.02 kg / 6.66 lbs
~0 Gs
|
| 3 mm |
3.13 kg / 6.90 lbs
2 815 Gs
|
0.47 kg / 1.04 lbs
470 g / 4.6 N
|
2.82 kg / 6.21 lbs
~0 Gs
|
| 5 mm |
2.63 kg / 5.81 lbs
2 582 Gs
|
0.40 kg / 0.87 lbs
395 g / 3.9 N
|
2.37 kg / 5.23 lbs
~0 Gs
|
| 10 mm |
1.47 kg / 3.23 lbs
1 926 Gs
|
0.22 kg / 0.48 lbs
220 g / 2.2 N
|
1.32 kg / 2.91 lbs
~0 Gs
|
| 20 mm |
0.34 kg / 0.75 lbs
930 Gs
|
0.05 kg / 0.11 lbs
51 g / 0.5 N
|
0.31 kg / 0.68 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
143 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
90 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MP 20x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MP 20x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.90 km/h
(6.36 m/s)
|
0.14 J | |
| 30 mm |
37.58 km/h
(10.44 m/s)
|
0.37 J | |
| 50 mm |
48.50 km/h
(13.47 m/s)
|
0.62 J | |
| 100 mm |
68.58 km/h
(19.05 m/s)
|
1.23 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 20x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 20x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 044 Mx | 50.4 µWb |
| Współczynnik Pc | 0.20 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 20x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.14 kg | Standard |
| Woda (dno rzeki) |
3.60 kg
(+0.46 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.20
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - uchwyty magnetyczne do poszukiwań
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Najwyższa nośność magnesu – co ma na to wpływ?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- o wypolerowanej powierzchni styku
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, taśma, szczelina) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Niklowa powłoka a alergia
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.
Kompas i GPS
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Pył jest łatwopalny
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Temperatura pracy
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
Ryzyko złamań
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Kruchość materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Wpływ na zdrowie
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Niszczenie danych
Potężne pole magnetyczne może usunąć informacje na kartach płatniczych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Potężne pole
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
