MP 20x5x27 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030185
GTIN/EAN: 5906301812029
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
5 mm [±0,1 mm]
Wysokość
27 mm [±0,1 mm]
Waga
59.64 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.36 kg / 101.60 N
Indukcja magnetyczna
581.04 mT / 5810 Gs
Powłoka
[NiCuNi] nikiel
33.00 ZŁ z VAT / szt. + cena za transport
26.83 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub napisz przez
formularz zgłoszeniowy
na naszej stronie.
Siłę i budowę magnesów neodymowych obliczysz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MP 20x5x27 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x5x27 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030185 |
| GTIN/EAN | 5906301812029 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 5 mm [±0,1 mm] |
| Wysokość | 27 mm [±0,1 mm] |
| Waga | 59.64 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.36 kg / 101.60 N |
| Indukcja magnetyczna ~ ? | 581.04 mT / 5810 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Poniższe informacje są rezultat kalkulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MP 20x5x27 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5716 Gs
571.6 mT
|
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
krytyczny poziom |
| 1 mm |
5288 Gs
528.8 mT
|
8.87 kg / 19.55 lbs
8865.5 g / 87.0 N
|
średnie ryzyko |
| 2 mm |
4861 Gs
486.1 mT
|
7.49 kg / 16.51 lbs
7491.0 g / 73.5 N
|
średnie ryzyko |
| 3 mm |
4446 Gs
444.6 mT
|
6.27 kg / 13.82 lbs
6267.5 g / 61.5 N
|
średnie ryzyko |
| 5 mm |
3677 Gs
367.7 mT
|
4.29 kg / 9.45 lbs
4285.9 g / 42.0 N
|
średnie ryzyko |
| 10 mm |
2216 Gs
221.6 mT
|
1.56 kg / 3.43 lbs
1557.1 g / 15.3 N
|
słaby uchwyt |
| 15 mm |
1354 Gs
135.4 mT
|
0.58 kg / 1.28 lbs
580.9 g / 5.7 N
|
słaby uchwyt |
| 20 mm |
864 Gs
86.4 mT
|
0.24 kg / 0.52 lbs
236.9 g / 2.3 N
|
słaby uchwyt |
| 30 mm |
405 Gs
40.5 mT
|
0.05 kg / 0.11 lbs
52.1 g / 0.5 N
|
słaby uchwyt |
| 50 mm |
133 Gs
13.3 mT
|
0.01 kg / 0.01 lbs
5.6 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MP 20x5x27 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.07 kg / 4.57 lbs
2072.0 g / 20.3 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.91 lbs
1774.0 g / 17.4 N
|
| 2 mm | Stal (~0.2) |
1.50 kg / 3.30 lbs
1498.0 g / 14.7 N
|
| 3 mm | Stal (~0.2) |
1.25 kg / 2.76 lbs
1254.0 g / 12.3 N
|
| 5 mm | Stal (~0.2) |
0.86 kg / 1.89 lbs
858.0 g / 8.4 N
|
| 10 mm | Stal (~0.2) |
0.31 kg / 0.69 lbs
312.0 g / 3.1 N
|
| 15 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
116.0 g / 1.1 N
|
| 20 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 20x5x27 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.11 kg / 6.85 lbs
3108.0 g / 30.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.07 kg / 4.57 lbs
2072.0 g / 20.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.04 kg / 2.28 lbs
1036.0 g / 10.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.18 kg / 11.42 lbs
5180.0 g / 50.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 20x5x27 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 1.14 lbs
518.0 g / 5.1 N
|
| 1 mm |
|
1.30 kg / 2.85 lbs
1295.0 g / 12.7 N
|
| 2 mm |
|
2.59 kg / 5.71 lbs
2590.0 g / 25.4 N
|
| 3 mm |
|
3.89 kg / 8.56 lbs
3885.0 g / 38.1 N
|
| 5 mm |
|
6.48 kg / 14.27 lbs
6475.0 g / 63.5 N
|
| 10 mm |
|
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
| 11 mm |
|
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
| 12 mm |
|
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MP 20x5x27 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.36 kg / 22.84 lbs
10360.0 g / 101.6 N
|
OK |
| 40 °C | -2.2% |
10.13 kg / 22.34 lbs
10132.1 g / 99.4 N
|
OK |
| 60 °C | -4.4% |
9.90 kg / 21.83 lbs
9904.2 g / 97.2 N
|
OK |
| 80 °C | -6.6% |
9.68 kg / 21.33 lbs
9676.2 g / 94.9 N
|
|
| 100 °C | -28.8% |
7.38 kg / 16.26 lbs
7376.3 g / 72.4 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MP 20x5x27 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
44.24 kg / 97.54 lbs
6 064 Gs
|
6.64 kg / 14.63 lbs
6636 g / 65.1 N
|
N/A |
| 1 mm |
41.02 kg / 90.43 lbs
11 008 Gs
|
6.15 kg / 13.56 lbs
6153 g / 60.4 N
|
36.92 kg / 81.39 lbs
~0 Gs
|
| 2 mm |
37.86 kg / 83.47 lbs
10 576 Gs
|
5.68 kg / 12.52 lbs
5679 g / 55.7 N
|
34.07 kg / 75.12 lbs
~0 Gs
|
| 3 mm |
34.85 kg / 76.83 lbs
10 146 Gs
|
5.23 kg / 11.52 lbs
5227 g / 51.3 N
|
31.36 kg / 69.14 lbs
~0 Gs
|
| 5 mm |
29.30 kg / 64.58 lbs
9 303 Gs
|
4.39 kg / 9.69 lbs
4394 g / 43.1 N
|
26.37 kg / 58.13 lbs
~0 Gs
|
| 10 mm |
18.30 kg / 40.35 lbs
7 353 Gs
|
2.75 kg / 6.05 lbs
2745 g / 26.9 N
|
16.47 kg / 36.32 lbs
~0 Gs
|
| 20 mm |
6.65 kg / 14.66 lbs
4 432 Gs
|
1.00 kg / 2.20 lbs
997 g / 9.8 N
|
5.98 kg / 13.19 lbs
~0 Gs
|
| 50 mm |
0.45 kg / 1.00 lbs
1 159 Gs
|
0.07 kg / 0.15 lbs
68 g / 0.7 N
|
0.41 kg / 0.90 lbs
~0 Gs
|
| 60 mm |
0.22 kg / 0.49 lbs
811 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
| 70 mm |
0.12 kg / 0.26 lbs
589 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 80 mm |
0.07 kg / 0.14 lbs
440 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 lbs
338 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.08 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
265 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MP 20x5x27 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 18.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 20x5x27 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
14.49 km/h
(4.02 m/s)
|
0.48 J | |
| 30 mm |
23.09 km/h
(6.42 m/s)
|
1.23 J | |
| 50 mm |
29.73 km/h
(8.26 m/s)
|
2.03 J | |
| 100 mm |
42.03 km/h
(11.68 m/s)
|
4.07 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 20x5x27 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 20x5x27 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 314 Mx | 143.1 µWb |
| Współczynnik Pc | 1.16 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 20x5x27 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.36 kg | Standard |
| Woda (dno rzeki) |
11.86 kg
(+1.50 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej mocy (wg danych).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Wady
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- przy bezpośrednim styku (brak farby)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina powietrzna (między magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Gładkość podłoża – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Ostrzeżenia
Interferencja magnetyczna
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Produkt nie dla dzieci
Silne magnesy nie służą do zabawy. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Uczulenie na powłokę
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Ogromna siła
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Ochrona urządzeń
Ekstremalne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Ochrona dłoni
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Nie przegrzewaj magnesów
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Rozprysk materiału
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
