MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030184
GTIN/EAN: 5906301812012
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
8.84 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.20 kg / 50.97 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
4.50 ZŁ z VAT / szt. + cena za transport
3.66 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo zostaw wiadomość przez
formularz zapytania
na stronie kontaktowej.
Udźwig a także wygląd magnesów neodymowych przetestujesz dzięki naszemu
narzędziu online do obliczeń.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030184 |
| GTIN/EAN | 5906301812012 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 8.84 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.20 kg / 50.97 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Poniższe informacje są rezultat analizy fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MP 20x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
5.20 kg / 5200.0 g
51.0 N
|
mocny |
| 1 mm |
5321 Gs
532.1 mT
|
4.21 kg / 4205.9 g
41.3 N
|
mocny |
| 2 mm |
4736 Gs
473.6 mT
|
3.33 kg / 3332.2 g
32.7 N
|
mocny |
| 3 mm |
4184 Gs
418.4 mT
|
2.60 kg / 2600.0 g
25.5 N
|
mocny |
| 5 mm |
3216 Gs
321.6 mT
|
1.54 kg / 1536.2 g
15.1 N
|
niskie ryzyko |
| 10 mm |
1650 Gs
165.0 mT
|
0.40 kg / 404.2 g
4.0 N
|
niskie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
0.12 kg / 122.3 g
1.2 N
|
niskie ryzyko |
| 20 mm |
544 Gs
54.4 mT
|
0.04 kg / 44.0 g
0.4 N
|
niskie ryzyko |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 8.5 g
0.1 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.8 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MP 20x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.04 kg / 1040.0 g
10.2 N
|
| 1 mm | Stal (~0.2) |
0.84 kg / 842.0 g
8.3 N
|
| 2 mm | Stal (~0.2) |
0.67 kg / 666.0 g
6.5 N
|
| 3 mm | Stal (~0.2) |
0.52 kg / 520.0 g
5.1 N
|
| 5 mm | Stal (~0.2) |
0.31 kg / 308.0 g
3.0 N
|
| 10 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 20x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.56 kg / 1560.0 g
15.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.04 kg / 1040.0 g
10.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.52 kg / 520.0 g
5.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.60 kg / 2600.0 g
25.5 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 20x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 520.0 g
5.1 N
|
| 1 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
| 2 mm |
|
2.60 kg / 2600.0 g
25.5 N
|
| 5 mm |
|
5.20 kg / 5200.0 g
51.0 N
|
| 10 mm |
|
5.20 kg / 5200.0 g
51.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MP 20x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.20 kg / 5200.0 g
51.0 N
|
OK |
| 40 °C | -2.2% |
5.09 kg / 5085.6 g
49.9 N
|
OK |
| 60 °C | -4.4% |
4.97 kg / 4971.2 g
48.8 N
|
OK |
| 80 °C | -6.6% |
4.86 kg / 4856.8 g
47.6 N
|
|
| 100 °C | -28.8% |
3.70 kg / 3702.4 g
36.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 20x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
54.03 kg / 54028 g
530.0 N
6 121 Gs
|
N/A |
| 1 mm |
48.76 kg / 48762 g
478.4 N
11 242 Gs
|
43.89 kg / 43886 g
430.5 N
~0 Gs
|
| 2 mm |
43.70 kg / 43700 g
428.7 N
10 642 Gs
|
39.33 kg / 39330 g
385.8 N
~0 Gs
|
| 3 mm |
38.98 kg / 38980 g
382.4 N
10 051 Gs
|
35.08 kg / 35082 g
344.2 N
~0 Gs
|
| 5 mm |
30.63 kg / 30634 g
300.5 N
8 910 Gs
|
27.57 kg / 27570 g
270.5 N
~0 Gs
|
| 10 mm |
15.96 kg / 15961 g
156.6 N
6 432 Gs
|
14.36 kg / 14365 g
140.9 N
~0 Gs
|
| 20 mm |
4.20 kg / 4200 g
41.2 N
3 299 Gs
|
3.78 kg / 3780 g
37.1 N
~0 Gs
|
| 50 mm |
0.19 kg / 190 g
1.9 N
702 Gs
|
0.17 kg / 171 g
1.7 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 20x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MP 20x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.62 km/h
(7.12 m/s)
|
0.22 J | |
| 30 mm |
42.41 km/h
(11.78 m/s)
|
0.61 J | |
| 50 mm |
54.70 km/h
(15.19 m/s)
|
1.02 J | |
| 100 mm |
77.35 km/h
(21.49 m/s)
|
2.04 J |
Tabela 9: Odporność na korozję
MP 20x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 20x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 20x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.20 kg | Standard |
| Woda (dno rzeki) |
5.95 kg
(+0.75 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- z wykorzystaniem blachy ze miękkiej stali, pełniącej rolę zwora magnetyczna
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Masywność podłoża – za chuda blacha nie przyjmuje całego pola, przez co część mocy jest tracona w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla redukują właściwości magnetyczne i siłę trzymania.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ostrzeżenie dla sercowców
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Uszkodzenia ciała
Bloki magnetyczne mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Bezpieczna praca
Przed przystąpieniem do pracy, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Urządzenia elektroniczne
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Tylko dla dorosłych
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Magnesy są kruche
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Temperatura pracy
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Łatwopalność
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Alergia na nikiel
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
