MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030184
GTIN/EAN: 5906301812012
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
8.84 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.20 kg / 50.97 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
4.50 ZŁ z VAT / szt. + cena za transport
3.66 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub zostaw wiadomość za pomocą
formularz
przez naszą stronę.
Moc i budowę magnesu zobaczysz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna produktu - MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030184 |
| GTIN/EAN | 5906301812012 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 8.84 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.20 kg / 50.97 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Przedstawione dane są rezultat analizy matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MP 20x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
5.20 kg / 11.46 lbs
5200.0 g / 51.0 N
|
średnie ryzyko |
| 1 mm |
5321 Gs
532.1 mT
|
4.21 kg / 9.27 lbs
4205.9 g / 41.3 N
|
średnie ryzyko |
| 2 mm |
4736 Gs
473.6 mT
|
3.33 kg / 7.35 lbs
3332.2 g / 32.7 N
|
średnie ryzyko |
| 3 mm |
4184 Gs
418.4 mT
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
średnie ryzyko |
| 5 mm |
3216 Gs
321.6 mT
|
1.54 kg / 3.39 lbs
1536.2 g / 15.1 N
|
niskie ryzyko |
| 10 mm |
1650 Gs
165.0 mT
|
0.40 kg / 0.89 lbs
404.2 g / 4.0 N
|
niskie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
0.12 kg / 0.27 lbs
122.3 g / 1.2 N
|
niskie ryzyko |
| 20 mm |
544 Gs
54.4 mT
|
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
niskie ryzyko |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 0.02 lbs
8.5 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 20x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.04 kg / 2.29 lbs
1040.0 g / 10.2 N
|
| 1 mm | Stal (~0.2) |
0.84 kg / 1.86 lbs
842.0 g / 8.3 N
|
| 2 mm | Stal (~0.2) |
0.67 kg / 1.47 lbs
666.0 g / 6.5 N
|
| 3 mm | Stal (~0.2) |
0.52 kg / 1.15 lbs
520.0 g / 5.1 N
|
| 5 mm | Stal (~0.2) |
0.31 kg / 0.68 lbs
308.0 g / 3.0 N
|
| 10 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
80.0 g / 0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 20x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.56 kg / 3.44 lbs
1560.0 g / 15.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.04 kg / 2.29 lbs
1040.0 g / 10.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.52 kg / 1.15 lbs
520.0 g / 5.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MP 20x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 1.15 lbs
520.0 g / 5.1 N
|
| 1 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 2 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 3 mm |
|
3.90 kg / 8.60 lbs
3900.0 g / 38.3 N
|
| 5 mm |
|
5.20 kg / 11.46 lbs
5200.0 g / 51.0 N
|
| 10 mm |
|
5.20 kg / 11.46 lbs
5200.0 g / 51.0 N
|
| 11 mm |
|
5.20 kg / 11.46 lbs
5200.0 g / 51.0 N
|
| 12 mm |
|
5.20 kg / 11.46 lbs
5200.0 g / 51.0 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MP 20x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.20 kg / 11.46 lbs
5200.0 g / 51.0 N
|
OK |
| 40 °C | -2.2% |
5.09 kg / 11.21 lbs
5085.6 g / 49.9 N
|
OK |
| 60 °C | -4.4% |
4.97 kg / 10.96 lbs
4971.2 g / 48.8 N
|
OK |
| 80 °C | -6.6% |
4.86 kg / 10.71 lbs
4856.8 g / 47.6 N
|
|
| 100 °C | -28.8% |
3.70 kg / 8.16 lbs
3702.4 g / 36.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MP 20x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.03 kg / 119.11 lbs
6 121 Gs
|
8.10 kg / 17.87 lbs
8104 g / 79.5 N
|
N/A |
| 1 mm |
48.76 kg / 107.50 lbs
11 242 Gs
|
7.31 kg / 16.13 lbs
7314 g / 71.8 N
|
43.89 kg / 96.75 lbs
~0 Gs
|
| 2 mm |
43.70 kg / 96.34 lbs
10 642 Gs
|
6.55 kg / 14.45 lbs
6555 g / 64.3 N
|
39.33 kg / 86.71 lbs
~0 Gs
|
| 3 mm |
38.98 kg / 85.94 lbs
10 051 Gs
|
5.85 kg / 12.89 lbs
5847 g / 57.4 N
|
35.08 kg / 77.34 lbs
~0 Gs
|
| 5 mm |
30.63 kg / 67.54 lbs
8 910 Gs
|
4.60 kg / 10.13 lbs
4595 g / 45.1 N
|
27.57 kg / 60.78 lbs
~0 Gs
|
| 10 mm |
15.96 kg / 35.19 lbs
6 432 Gs
|
2.39 kg / 5.28 lbs
2394 g / 23.5 N
|
14.36 kg / 31.67 lbs
~0 Gs
|
| 20 mm |
4.20 kg / 9.26 lbs
3 299 Gs
|
0.63 kg / 1.39 lbs
630 g / 6.2 N
|
3.78 kg / 8.33 lbs
~0 Gs
|
| 50 mm |
0.19 kg / 0.42 lbs
702 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.17 kg / 0.38 lbs
~0 Gs
|
| 60 mm |
0.09 kg / 0.20 lbs
480 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 70 mm |
0.05 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.01 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 80 mm |
0.02 kg / 0.05 lbs
253 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.03 lbs
193 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MP 20x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MP 20x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.62 km/h
(7.12 m/s)
|
0.22 J | |
| 30 mm |
42.41 km/h
(11.78 m/s)
|
0.61 J | |
| 50 mm |
54.70 km/h
(15.19 m/s)
|
1.02 J | |
| 100 mm |
77.35 km/h
(21.49 m/s)
|
2.04 J |
Tabela 9: Parametry powłoki (trwałość)
MP 20x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 20x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 20x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.20 kg | Standard |
| Woda (dno rzeki) |
5.95 kg
(+0.75 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- z zastosowaniem blachy ze stali o wysokiej przenikalności, działającej jako element zamykający obwód
- o grubości nie mniejszej niż 10 mm
- z powierzchnią wolną od rys
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (pomiędzy magnesem a blachą), ponieważ nawet niewielka odległość (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają przenikalność magnetyczną i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig mierzono z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą zmniejsza udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Limity termiczne
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i siłę przyciągania.
Reakcje alergiczne
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Ryzyko połknięcia
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Podatność na pękanie
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Wpływ na smartfony
Silne pole magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Samozapłon
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Niszczenie danych
Potężne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Siła zgniatająca
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy wkładaj dłoni pomiędzy dwa silne magnesy.
