MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030184
GTIN/EAN: 5906301812012
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
8.84 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.20 kg / 50.97 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
4.50 ZŁ z VAT / szt. + cena za transport
3.66 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo skontaktuj się korzystając z
formularz
na stronie kontaktowej.
Właściwości i formę elementów magnetycznych sprawdzisz dzięki naszemu
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja produktu - MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x10x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030184 |
| GTIN/EAN | 5906301812012 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 8.84 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.20 kg / 50.97 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione dane stanowią wynik analizy matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MP 20x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5917 Gs
591.7 mT
|
5.20 kg / 5200.0 g
51.0 N
|
uwaga |
| 1 mm |
5321 Gs
532.1 mT
|
4.21 kg / 4205.9 g
41.3 N
|
uwaga |
| 2 mm |
4736 Gs
473.6 mT
|
3.33 kg / 3332.2 g
32.7 N
|
uwaga |
| 3 mm |
4184 Gs
418.4 mT
|
2.60 kg / 2600.0 g
25.5 N
|
uwaga |
| 5 mm |
3216 Gs
321.6 mT
|
1.54 kg / 1536.2 g
15.1 N
|
słaby uchwyt |
| 10 mm |
1650 Gs
165.0 mT
|
0.40 kg / 404.2 g
4.0 N
|
słaby uchwyt |
| 15 mm |
907 Gs
90.7 mT
|
0.12 kg / 122.3 g
1.2 N
|
słaby uchwyt |
| 20 mm |
544 Gs
54.4 mT
|
0.04 kg / 44.0 g
0.4 N
|
słaby uchwyt |
| 30 mm |
240 Gs
24.0 mT
|
0.01 kg / 8.5 g
0.1 N
|
słaby uchwyt |
| 50 mm |
75 Gs
7.5 mT
|
0.00 kg / 0.8 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 20x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.04 kg / 1040.0 g
10.2 N
|
| 1 mm | Stal (~0.2) |
0.84 kg / 842.0 g
8.3 N
|
| 2 mm | Stal (~0.2) |
0.67 kg / 666.0 g
6.5 N
|
| 3 mm | Stal (~0.2) |
0.52 kg / 520.0 g
5.1 N
|
| 5 mm | Stal (~0.2) |
0.31 kg / 308.0 g
3.0 N
|
| 10 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MP 20x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.56 kg / 1560.0 g
15.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.04 kg / 1040.0 g
10.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.52 kg / 520.0 g
5.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.60 kg / 2600.0 g
25.5 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 20x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.52 kg / 520.0 g
5.1 N
|
| 1 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
| 2 mm |
|
2.60 kg / 2600.0 g
25.5 N
|
| 5 mm |
|
5.20 kg / 5200.0 g
51.0 N
|
| 10 mm |
|
5.20 kg / 5200.0 g
51.0 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MP 20x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.20 kg / 5200.0 g
51.0 N
|
OK |
| 40 °C | -2.2% |
5.09 kg / 5085.6 g
49.9 N
|
OK |
| 60 °C | -4.4% |
4.97 kg / 4971.2 g
48.8 N
|
OK |
| 80 °C | -6.6% |
4.86 kg / 4856.8 g
47.6 N
|
|
| 100 °C | -28.8% |
3.70 kg / 3702.4 g
36.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 20x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
54.03 kg / 54028 g
530.0 N
6 121 Gs
|
N/A |
| 1 mm |
48.76 kg / 48762 g
478.4 N
11 242 Gs
|
43.89 kg / 43886 g
430.5 N
~0 Gs
|
| 2 mm |
43.70 kg / 43700 g
428.7 N
10 642 Gs
|
39.33 kg / 39330 g
385.8 N
~0 Gs
|
| 3 mm |
38.98 kg / 38980 g
382.4 N
10 051 Gs
|
35.08 kg / 35082 g
344.2 N
~0 Gs
|
| 5 mm |
30.63 kg / 30634 g
300.5 N
8 910 Gs
|
27.57 kg / 27570 g
270.5 N
~0 Gs
|
| 10 mm |
15.96 kg / 15961 g
156.6 N
6 432 Gs
|
14.36 kg / 14365 g
140.9 N
~0 Gs
|
| 20 mm |
4.20 kg / 4200 g
41.2 N
3 299 Gs
|
3.78 kg / 3780 g
37.1 N
~0 Gs
|
| 50 mm |
0.19 kg / 190 g
1.9 N
702 Gs
|
0.17 kg / 171 g
1.7 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MP 20x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 9.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MP 20x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.62 km/h
(7.12 m/s)
|
0.22 J | |
| 30 mm |
42.41 km/h
(11.78 m/s)
|
0.61 J | |
| 50 mm |
54.70 km/h
(15.19 m/s)
|
1.02 J | |
| 100 mm |
77.35 km/h
(21.49 m/s)
|
2.04 J |
Tabela 9: Odporność na korozję
MP 20x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 20x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 116 Mx | 161.2 µWb |
| Współczynnik Pc | 1.13 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 20x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.20 kg | Standard |
| Woda (dno rzeki) |
5.95 kg
(+0.75 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (nikiel, złoto, srebro) zyskują nowoczesny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- z użyciem płyty ze miękkiej stali, działającej jako element zamykający obwód
- której grubość to min. 10 mm
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (metal do metalu)
- przy osiowym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Odstęp (pomiędzy magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek działania siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig określano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
BHP przy magnesach
Przegrzanie magnesu
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Przechowuj z dala od niepowołanych osób.
Moc przyciągania
Używaj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Niszczenie danych
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Obróbka mechaniczna
Proszek generowany podczas obróbki magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.
Ochrona dłoni
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Alergia na nikiel
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Wpływ na smartfony
Silne pole magnetyczne destabilizuje działanie kompasów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
