magnesy neodymowe

Neodymowe magnesy Nd2Fe14B - nasza oferta. Na poniższym spisie znajdują się praktycznie wszystkie neodymowe magnesy które posiadamy na stanie zobacz cennik magnesów

uchwyt z magnesem do poszukiwań F300 GOLD z silnym uchem bocznym i liną

Gdzie zakupić silny UM magnes neodymowy do poszukiwań? Uchwyty z magnesów w solidnej i szczelnej obudowie ze stali doskonale się nadają do użytkowania w niesprzyjających warunkach pogodowych, w tym podczas opadów deszczu i śniegu czytaj więcej nt....

uchwyty magnetyczne

Uchwyty magnetyczne mogą być wykorzystywane do ułatwienia procesów produkcyjnych, odkrywania wody lub do znajdowania meteorów z metalu. Mocowania to śruba 3x [M10] duża siła poznaj ofertę...

Obiecujemy wysyłkę zamówionych magnesów w dniu zakupu jeśli zlecenie złożone jest do 14:00 w dni robocze.

logo Dhit sp. z o.o.

Słownik terminologii magnetycznej

Jak odnaleźć się w świecie magnesów neodymowych?

Cześć w naszym szczegółowym słowniku poświęconym fascynujący świat magnesów neodymowych. Jako uznany dostawca w dostarczaniu doskonałych rozwiązań magnetycznych, doskonale rozumiemy, jak ważne jest posiadanie gruntownej znajomości na temat terminologii z tej wyjątkowej dziedziny. Ten słownik został dokładnie przygotowany, aby stać się kluczowym źródłem informacji dla wszelkich zainteresowanych, kto interesuje się magnesami – czy jesteś profesjonalistą branżowym, pasjonatem, czy entuzjastą zastosowań magnesów.

W naszym słowniku znajdziesz czytelne i wyczerpujące wyjaśnienia kluczowych terminów i konceptów związanych z magnesami neodymowymi. Od podstaw funkcjonowania pól magnetycznych i indukcji magnetycznej, przez charakterystyki magnetyczne, aż po klasy materiałów i innowacyjne rozwiązania – każda definicja została opracowana z myślą o poszerzeniu Twojej wiedzy oraz łatwości zrozumienia nawet skomplikowanych koncepcji. Czy to, że studiujesz zastosowania magnesów w przemyśle, realizujesz projekty badawcze, czy realizujesz własne projekty DIY, ten słownik ułatwi Ci poznanie.

Odkrywaj interesujący świat magnesów neodymowych bez obaw. Dowiaduj się więcej, odkrywaj nowe informacje i poznawaj zastosowania tych niezastąpionych materiałów, czytając o i koncepcje, które opisują ich działanie i wszechstronność. Pozwól, by ten słownik Twoim przewodnikiem w zgłębianiu rozwijającej się dziedziny technologii magnetycznych.

Litera: A

Przerwa powietrzna to przestrzeń wypełniona powietrzem, która oddziela magnes od innego obiektu. Większa przerwa powoduje osłabienie siły przyciągania. Wzór: B = μ0(H - M), gdzie B to indukcja magnetyczna, μ0 to przenikalność próżni, H to natężenie pola, a M to magnetyzacja.
Materiał anizotropowy, takie jak neodymowe magnesy, ma właściwości zależne od kierunku. Magnesy o preferencyjnym kierunku magnesowania są wydajniejsze od izotropowych, ale ich magnesowanie odbywa się w precyzyjnie określonej osi.
Wyżarzanie to metoda eliminacji naprężeń wewnętrznych w materiałach magnetycznych. Przeprowadza się je w kontrolowanych warunkach, zwykle w próżni, aby zapobiec utlenianiu. Wyżarzanie poprawia strukturę i pozwala dostosować materiał do wymagań aplikacji.
Magnesowanie osiowe oznacza, że bieguny magnetyczne znajdują się na przeciwnych końcach magnesu, a linie pola magnetycznego przebiegają wzdłuż długości magnesu. Jest to popularne w magnesach pierścieniowych oraz sferycznych. Wzór: Bz = (Br/2) * [(L + 2z) / (L^2 + 4z^2)^0.5 - (L - 2z) / (L^2 + 4z^2)^0.5].

Litera: B

Indukcja magnetyczna B to natężenie pola przechodzącego przez obiekt. Jest mierzona lub gaussach. Wzór: B = μ0(H + M), gdzie μ0 to przenikalność próżni, H to natężenie pola zewnętrznego, a M to magnetyzacja.
Pętla histerezy to wykres zależności między indukcją magnetyczną (B) a siłą magnesowania. Pozwala określić takie właściwości jak energia strat magnetycznych. Pętla histerezy stanowi podstawę przy ocenie materiałów stosowanych w silnikach elektrycznych.
Indukcja remanentna Bd to pozostałość, które utrzymuje się w materiale po usunięciu pola zewnętrznego. Jest mierzona w jednostkach tesla i reprezentuje zdolność materiału do utrzymywania resztkowego namagnesowania.
Nachylenie linii pracy, oznaczone jako Bd/Hd, to stosunek indukcji remanentnej do siły demagnetyzującej. Wzór: Bd/Hd = (Br - Hd) / Hd. Jest to kluczowy parametr przy projektowaniu obwodów magnetycznych.
Bg oznacza średnią wartość indukcji magnetycznej w przerwie powietrznej. Jest to istotny parametr przy projektowaniu urządzeń opartych na obwodach magnetycznych. Wzór: Bg = Φ / A, gdzie Φ to strumień magnetyczny, a A to powierzchnia przerwy powietrznej.

Litera: C

System jednostek C.G.S. jest stosowany głównie w magnetyzmie do opisu właściwości materiałów. Pomimo że został zastąpiony, C.G.S. wciąż znajduje zastosowanie w historycznych i specjalistycznych analizach. Jednostki w tym systemie obejmują siłę magnetyzującą, indukcję magnetyczną.
Obwód zamknięty odnosi się do konfiguracji, w której strumień magnetyczny tworzy pełną pętlę. Wykorzystuje się materiały o wysokiej przenikalności, które zapewniają ciągłość przepływu pola magnetycznego. Takie obwody są kluczowe w zastosowaniach wymagających kontrolowanych pól magnetycznych.
Siła koercji, oznaczana jako Hc, to wymagana siła do rozmagnesowania materiału. Parametr ten mierzy odporność materiału na rozmagnesowanie. Wzór: Hc = -M/χ, gdzie M to magnetyzacja, a χ to przenikalność magnetyczna.
Wysoka wartość koercji wskazuje na trwałość magnetycznych właściwości materiału. Wpływa również na stabilność magnetyczną w zmiennych warunkach.
Koercja wewnętrzna określa zdolność materiału do zachowania magnetyzmu. Mierzy siłę demagnetyzującą potrzebną do zredukowania magnetyzacji wewnętrznej do zera. Materiały o wysokiej koercji wykazują trwałe właściwości magnetyczne.
Temperatura Curie to punkt, w którym materiały ferromagnetyczne tracą swoje właściwości magnetyczne. Po przekroczeniu tej temperatury materiał przestaje wykazywać silne magnetyczne zachowania. Wzór: Tc = (2kB / μ0) * J0^2 / (χ), gdzie kB to stała Boltzmanna, a J0 to moment magnetyczny.

Litera: D

Rozmagnesowanie odnosi się do procesu osłabienia resztkowej indukcji w materiale. Metody obejmują stosowanie zmiennych pól magnetycznych, ogrzewanie powyżej temperatury Curie. Proces ten jest kluczowy w zastosowaniach wymagających lub całkowitego usunięcia magnetyzmu.
Krzywa rozmagnesowania przedstawia zależność w cyklach magnetyzacji i rozmagnesowania. Pokazuje właściwości histerezy materiału, takie jak charakterystyka stabilności magnetycznej. Jest to narzędzie niezbędne do analizy magnetycznych cech materiałów.
Siła rozmagnesowująca odnosi się do pola przeciwnego, które zmniejsza magnetyzację materiału. Pozwala to na kontrolowanie poziomu magnetyzacji w materiałach.
Rozmagnesowany materiał to taki, w którym indukcja remanentna została zredukowana do zera. Stan ten osiąga się poprzez stosowanie zmiennego pola magnetycznego. Rozmagnesowanie jest ważne w eliminacji wpływów magnetycznych.
Gęstość magnesu neodymowego, wynosząca średnio około 7.5 g/cm³, jest jednym z kluczowych parametrów określających jego właściwości magnetyczne. Gęstość można łatwo obliczyć za pomocą wzoru:
ρ = m / V, gdzie:
ρ - gęstość (w g/cm³ lub kg/m³).
m - masa magnesu (w gramach lub kilogramach).
V - objętość magnesu (w cm³ lub m³).

Na przykład, magnes o masie 150 g i objętości 20 cm³, gęstość wynosi:
ρ = 150 / 20 = 7.5 g/cm³.

Znajomość gęstości magnesu pozwala lepiej przewidywać jego siłę magnetyczną i trwałość.
Materiał diamagnetyczny wykazuje brak trwałego momentu magnetycznego. Pod wpływem pola zewnętrznego generuje pole przeciwne. Zjawisko to wynika z które tworzą przeciwdziałające pole magnetyczne.
Średnica to w linii prostej na powierzchni magnesu tarczowego, pierścieniowego lub sferycznego. Jest to kluczowy parametr przy projektowaniu układów magnetycznych.
Magnesy diametralnie namagnesowane mają bieguny umieszczone na przeciwnych stronach średnicy. Są często stosowane w zastosowaniach wymagających interakcji radialnych lub obrotowych.
Tolerancja wymiarowa określa dopuszczalne odchylenie od specyfikacji wymiarowych. Jest kluczowa przy integracji magnetycznych komponentów w układzie.
Wymiary odnoszą się do takich jak długość, szerokość, wysokość lub średnica magnesu. Precyzja wymiarowa jest kluczowe dla poprawnego działania systemów magnetycznych.
Kierunek magnesowania określa orientację domen magnetycznych. Jest to cecha kluczowa, która wpływa na zachowanie magnetyczne materiału.
Domeny to mikroskopijne obszary, w których momenty magnetyczne są wyrównane w tym samym kierunku. Mogą być zmieniane przez czynniki fizyczne i mechaniczne.

Litera: E

Prądy wirowe to elektryczne prądy indukowane w materiałach przewodzących podczas zmian w polu magnetycznym. Powodują one problemy z efektywnością. Stosowanie rdzeni laminowanych lub osłon magnetycznych minimalizuje ich wpływ i zwiększa wydajność.
Elektromagnes to magnes wytworzony przez przepływ prądu elektrycznego. Siła pola magnetycznego zależy od natężenia prądu. Elektromagnesy są szeroko stosowane w przemyśle i technologiach.
Energia magnetyczna to miara energii przechowywanej w materiale magnetycznym. Obliczana jako iloczyn indukcji magnetycznej (Bd) i siły magnesowania (Hd). Wyrażana w różnych jednostkach. Jest kluczowym parametrem przy ocenie ich efektywności w aplikacjach.
Mierzona jako iloczyn remanencji i koercji materiału. Magnesy o wyższej energii mają lepszą wydajność.

Litera: F

Ferryty to substancje składające się głównie z tlenku żelaza (Fe2O3). Są cenione za swoje właściwości wysokoczęstotliwościowe. Używane w zastosowaniach wymagających małych strat prądów wirowych.
Materiał ferromagnetyczny charakteryzuje się silnymi właściwościami magnetycznymi. Atomy w takim materiale wytwarzając silne pole magnetyczne. Przykłady to żelazo, nikiel, kobalt. Stanowią podstawę wielu zastosowań magnetycznych dzięki ich trwałym właściwościom magnetycznym.
Gęstość strumienia magnetycznego, oznaczana jako wskazuje ilość strumienia przechodzącego przez jednostkę powierzchni. Mierzona w Teslach (T) lub Gaussach (G). Jest to kluczowy parametr przy projektowaniu układów magnetycznych.
Miernik strumienia magnetycznego służy do pomiaru indukcji magnetycznej (B). Wykorzystuje różne technologie, takie jak efekt Halla czy techniki cewek rotacyjnych. Jest niezbędny w diagnostyce i projektowaniu.

Litera: G

Gauss to nazwa pochodzi od niemieckiego fizyka Karla Friedricha Gaussa. Jeden Gauss (G) odpowiada pojęciu indukcji magnetycznej w mniejszych skalach. Często używany w zastosowaniach laboratoryjnych.
Gaussomierz to urządzenie do pomiaru siły pola magnetycznego. Stosuje sensory efektu Halla. Znajduje zastosowanie w wielu gałęziach inżynierii i nauki.
Gilbert to jednostka siły magnetomotorycznej (mmf). Jeden Gilbert odpowiada natężeniu potrzebnemu do wytworzenia strumienia magnetycznego w określonym obwodzie.
Klasa magnesu odnosi się do jego właściwości magnetycznych, takich jak BHmax czy Hc. Wyższe klasy oferują większą odporność na temperatury i siły demagnetyzujące.

Litera: H

Czujnik Halla działa na zasadzie efektu Halla, który polega na indukowaniu napięcia w przewodniku w obecności pola magnetycznego. Urządzenia te odgrywają kluczową rolę w automatyce przemysłowej i precyzyjnych pomiarach.
Siła koercji (Hc) oznacza natężenie pola magnetycznego wymagane do zmniejszenia indukcji szczątkowej (Br) materiału do zera. Wyrażana w oerstedach (Oe) lub kiloamperach na metr (kA/m). Wyższe wartości Hc wskazują na odporność na wpływy zewnętrzne.
Hd to natężenie pola magnetycznego potrzebne do osiągnięcia określonej indukcji remanentnej (Bd). Mierzona w oerstedach (Oe) lub kiloamperach na metr (kA/m).
Magnes o wysokim gradiencie pola wytwarza z dużą precyzją kontroluje gradient. Zastosowania obejmują MRI, separację magnetyczną.
Hm oznacza największe natężenie pola magnetycznego, jakie można zastosować przed osiągnięciem nasycenia materiału. Jest istotna przy ocenie stabilności i ograniczeń operacyjnych komponentów magnetycznych.
Pole jednorodne charakteryzuje się brakiem zmian intensywności w danej przestrzeni. Jest np. w spektroskopii lub kalibracji urządzeń.
Magnes podkowiasty ma bieguny ustawione blisko siebie. Popularny w edukacji, detekcji metali.
Efektywna siła magnesowania (Hs) to pole potrzebne do pełnego namagnesowania materiału do nasycenia. Mierzona w miarach siły magnetycznej.
Wykres histerezy, zwany również permeametrem, przedstawia charakterystykę magnetyczną materiałów. Stosowany w kontroli jakości, analizie strat energetycznych.
Pętla histerezy to graficzne przedstawienie relacji między indukcją magnetyczną (B) a siłą magnesowania (H). Dostarcza informacji o zachowaniu materiału podczas cykli magnesowania.
Histereza odnosi się do zdolności materiału do utrzymania części namagnesowania po usunięciu pola magnetycznego. Straty histerezowe to przemiany energii w ciepło. Ważne przy projektowaniu transformatorów czy silników.

Litera: I

Średnica wewnętrzna (ID) to odległość między wewnętrznymi powierzchniami obiektu. Jest istotnym parametrem w projektowaniu układów magnetycznych.
Indukcja magnetyczna (B) reprezentuje ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię. Wyrażana w Teslach (T) lub Gaussach (G). ważna w charakterystyce materiałów magnetycznych.
Straty nieodwracalne to trwałe zmniejszenie magnetyzacji materiału. Powodują utrudnienia w długoterminowym użytkowaniu magnesów.
Materiał izotropowy nie zależy od orientacji pola magnetycznego. stosowany w zastosowaniach wymagających równomiernego zachowania magnetycznego.

Litera: K

Przytrzymywacz magnetyczny to element wykonany z miękkiego żelaza lub materiału ferromagnetycznego, umieszczany na lub pomiędzy biegunami magnesu stałego. pomaga w utrzymaniu mocy magnesu. Stosowany głównie z magnesami Alnico lub starszymi konstrukcjami.
Kilogauss (kG) to jednostka służąca do wyrażania indukcji magnetycznej. Jeden kilogauss (1 kG) odpowiada wartości 1000 G. Jednostka ta znajduje zastosowanie w badaniach naukowych i testach magnesów.

Litera: L

Linia obciążenia przedstawia punkty pracy materiału magnetycznego na krzywej rozmagnesowania. jest użyteczna w optymalizacji aplikacji magnetycznych.
Magnetyt to naturalnie występujący materiał magnetyczny składający się z tlenku żelaza (Fe3O4). posiada unikalne właściwości wynikające z ułożenia domen magnetycznych.

Litera: M

Magnes to materiał przyciągający lub odpychający inne materiały magnetyczne. znajduje zastosowanie w elektronice, silnikach, generatorach i nośnikach magnetycznych.
Zestaw magnetyczny to system składający się z różnych komponentów magnetycznych. Wykorzystywany w sensorach, separatorach magnetycznych.
Oś magnetyczna to ścieżka preferowanego przepływu strumienia magnetycznego. kluczowa dla analizy zachowania magnesu i jego interakcji z innymi elementami magnetycznymi.
Obwód magnetyczny to analogiczna do obwodu elektrycznego. jest kluczowy w projektowaniu urządzeń magnetycznych.
Energia magnetyczna to potencjał pola magnetycznego do wykonywania pracy. związana z siłą pola magnetycznego i objętością przestrzeni.
Pole magnetyczne (B) to obszar, w którym materiały magnetyczne lub ładunki elektryczne podlegają sile magnetycznej. Reprezentowane przez linie strumienia magnetycznego.
Natężenie pola magnetycznego (H) to intensywność pola magnetycznego w obwodzie. Zależy od prądu płynącego przez przewodnik.
Strumień magnetyczny to miara całkowitego pola magnetycznego w danym regionie. Wyrażany w weberach (Wb).
Magnetic flux density, oznaczana jako B, jest parametrem opisującym intensywność pola magnetycznego w danym miejscu. Reprezentuje liczbę linii pola magnetycznego przecinających powierzchnię.

Wyrażona jest wzorem:
B = Φ / A

Gdzie:
B: Magnetic flux density (Tesla, Gauss)
Φ: Magnetic flux (Weber)
A: Surface area (m²)

Przykładowo, dla strumienia magnetycznego wynoszącego 0,01 Weber i powierzchni 0,1 m², gęstość strumienia magnetycznego wynosi 0,1 Tesli.

Wysoka wartość B oznacza silniejsze pole magnetyczne, co jest istotne w zastosowaniach przemysłowych i medycznych.
Dostarczane są kluczowe dane, takie jak remanencja i koercja. Jest idealny do zastosowań w transformatorach i silnikach elektrycznych.
jest wyrażana w jednostkach takich jak tesle (T) w układzie SI lub gausy (G) w układzie CGS. Gęstość strumienia magnetycznego jest kluczowym parametrem w projektowaniu układów magnetycznych.
Linia siły magnetycznej, zwana także linią pola magnetycznego, to ścieżka wskazująca, jak poruszałyby się bieguny magnetyczne w danym polu. linie tworzą zamknięte pętle dla większości magnesów.
Ścieżka magnetyczna odnosi się do trasy, którą podąża strumień magnetyczny w obwodzie magnetycznym lub systemie. minimalizuje straty magnetyczne.
Przenikalność magnetyczna określa zdolność materiału do przewodzenia strumienia magnetycznego. Ich zastosowanie zwiększa wydajność systemów opartych na magnesach.
Każdy magnes ma biegun północny i południowy. Polaryzacja biegunów determinuje siły przyciągania i odpychania między magnesami.
Nasycenie magnetyczne określa maksymalne natężenie pola magnetycznego, jakie może osiągnąć materiał. Ma również znaczenie w procesie projektowania obwodów magnetycznych.
Może być realizowane za pomocą pola magnetycznego lub prądu elektrycznego. Zdolność do magnesowania jest istotna w projektowaniu magnesów trwałych i elektromagnesów.
Magnetyzacja odnosi się do procesu wyrównywania lub indukowania pola magnetycznego w materiale. kluczowa dla działania magnesów i urządzeń magnetycznych.
Krzywa magnetyzacji, zwana także krzywą rozmagnesowania lub krzywą B-H, przedstawia graficzną reprezentację właściwości magnetycznych materiału. Dostarczają istotnych informacji o charakterystyce materiału, jego nasyceniu i stabilności magnetycznej.
Namagnesowany oznacza rezultat ustawienia momentów magnetycznych w określonym kierunku. materiał namagnesowany wykazuje właściwości magnetyczne i może przyciągać lub odpychać inne materiały magnetyczne.
Siła magnetomotoryczna (mmf) to miara różnicy potencjałów magnetycznych. Wyrażana w amperozwojach (At) lub gilbertach (Gb).
Materiał w kontekście magnetyzmu odnosi się do klasyfikowanej jako ferromagnetyczna, paramagnetyczna lub diamagnetyczna. Zachowanie magnetyczne materiału zależy od jego struktury atomowej i molekularnej.
Maximum energy product, oznaczany jako BHmax, jest miarą maksymalnej energii, jaką może dostarczyć magnes na jednostkę objętości.

Wzór opisujący BHmax przedstawia się następująco:
BHmax = B × H

Gdzie:
B: Gęstość strumienia magnetycznego (Tesla)
H: Natężenie pola magnetycznego (A/m)

Przykładowo, magnes z B = 1 T i H = 600 kA/m osiąga BHmax równy 600 kJ/m³.

Wysoka wartość BHmax jest charakterystyczna dla magnesów neodymowych, co czyni je niezastąpionymi w zaawansowanych zastosowaniach przemysłowych.
Maksymalna temperatura pracy (Tmax) to najwyższa temperatura, przy której materiał magnetyczny może działać bez znaczącej degradacji lub utraty właściwości magnetycznych. temperatura powyżej Tmax może prowadzić do rozmagnesowania materiału.
Makswell to jednostka strumienia magnetycznego nazwana na cześć Jamesa Clerka Maxwella. Jednostka ta jest używana w systemie CGS i odpowiada 10^−8 weberów (Wb).
Mega Gauss Oersteds (MGOe) to jednostka używana do wyrażania maksymalnego iloczynu energii magnetycznej (BHmax) magnesów trwałych. 1 MGOe odpowiada milionowi gauss-oerstedów, co czyni ją wygodną jednostką do porównywania wydajności i siły magnetycznej magnesów w zastosowaniach przemysłowych.
Monopol magnetyczny odnosi się do pojęcia teoretycznego rozważanego w fizyce, zwłaszcza w fizyce cząstek. do tej pory monopole nie zostały zaobserwowane w naturze.

Litera: N

Klasa N odnosi się do oznaczenia liczbowego, np. N35, N42 czy N52, które wskazuje maksymalny iloczyn energii magnetycznej (BHmax). klasy te pomagają użytkownikom w wyborze odpowiednich magnesów do specyficznych zastosowań.
Biegun północny to biegun, który po zawieszeniu swobodnym wskazuje geograficzny biegun północny Ziemi. Biegun północny magnesu przyciąga biegun południowy innego magnesu, generując siłę przyciągania magnetycznego.

Litera: O

Oersted to nazwa pochodzi od Hansa Christiana Oersteda, który odkrył zależność między prądami elektrycznymi a polami magnetycznymi. 1 oersted to pole, które wywiera siłę jednej dyny na jednostkowy biegun magnetyczny w odległości jednego centymetra.
Obwód otwarty odnosi się do powodując przerwanie ścieżki strumienia magnetycznego. W takim stanie linie pola magnetycznego nie mogą tworzyć zamkniętej pętli, co skutkuje osłabieniem pola magnetycznego.
Orientacja odnosi się do ustawienia lub wyrównania magnesu, materiału magnetycznego lub elementu magnetycznego względem osi odniesienia. Prawidłowa orientacja jest kluczowa dla osiągnięcia pożądanych właściwości magnetycznych i optymalizacji systemów magnetycznych.

Litera: P

Materiały paramagnetyczne to substancje, które wykazują paramagnetyzm i są słabo przyciągane do pól magnetycznych. przykłady to aluminium, mangan i tlen.
Paramagnetyzm to pojawia się, gdy materiały rozwijają chwilowy moment magnetyczny w kierunku pola. przykładami są aluminium, platyna i tlen.
Magnes trwały to materiał lub obiekt, który zachowuje swoje właściwości magnetyczne na stałe. znajduje zastosowanie w silnikach elektrycznych, generatorach, urządzeniach pamięci magnetycznej i głośnikach.
Magnesy trwałe generują pole magnetyczne bez potrzeby zewnętrznego zasilania. Ich trwałość i stabilność czynią je niezastąpionymi w wielu zastosowaniach przemysłowych.
cecha pozwalająca materiałowi wspierać tworzenie pola magnetycznego. wartość przenikalności zależy od składu chemicznego i struktury materiału.
Przenikalność magnetyczna, oznaczana symbolem P, określa łatwość, z jaką strumień magnetyczny może przepływać przez określony obwód magnetyczny.

Przenikalność można obliczyć za pomocą wzoru:
P = (μ × A) / l

Gdzie:
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)
l: Długość ścieżki magnetycznej (m)

Przykładowo, materiał o dużym polu przekroju i krótkiej ścieżce magnetycznej wykazuje wysoką przenikalność, co czyni go wydajnym w zastosowaniach magnetycznych.

Wysoka przenikalność jest istotna dla zwiększenia efektywności działania systemów magnetycznych.
Współczynnik przenikalności to stosunek remanencji (Br) do siły rozmagnesowania (Hd) w materiale magnetycznym. Współczynnik ten wpływa na stabilność magnetyczną i parametry takie jak iloczyn energii (BHmax) w obwodach magnetycznych.
Zapewnia ochronę przed korozją, utlenianiem i demagnetyzacją, co zwiększa trwałość magnesów. Najczęściej stosowane materiały powłokowe to nikiel, miedź, epoksyd, cynk, złoto czy cyna.
bieguny o tej samej polaryzacji odpychają się, a o przeciwnych przyciągają. odgrywa istotną rolę w projektowaniu urządzeń opartych na magnesach.
Biegun magnetyczny odnosi się do jednego z dwóch końców magnesu, gdzie pole magnetyczne jest najsilniejsze: północnego lub południowego. Ich położenie i właściwości są kluczowe dla optymalizacji wydajności w zastosowaniach magnetycznych.
Siła przyciągania, znana również jako siła trzymania, opisuje zdolność magnesu do utrzymania przyczepności. Można ją oszacować za pomocą wzoru:
F = B² × A / (2 × μ₀), gdzie:
F - siła przyciągania (w niutonach, N).
B - gęstość strumienia magnetycznego na powierzchni magnesu (w teslach, T).
A - powierzchnia styku magnesu z materiałem (w m²).
μ₀ - przenikalność magnetyczna próżni (4π × 10⁻⁷ H/m).

Przykład: Jeśli gęstość strumienia magnetycznego wynosi 1.2 T, a powierzchnia styku magnesu to 0.005 m², siła przyciągania wynosi:
F = (1.2)² × 0.005 / (2 × 4π × 10⁻⁷) ≈ 572 N.

Litera: R

te magnesy są znane ze swoich wyjątkowych właściwości magnetycznych i szerokiego zastosowania. Dzięki dużej sile magnetycznej są wykorzystywane w przemyśle, elektronice i technologiach konsumenckich.
Wykonane są z pierwiastków ziem rzadkich, takich jak neodym, dysproz czy prazeodym. Znajdują zastosowanie w przemyśle, medycynie i elektronice, gdzie wymagane są silne pola magnetyczne.
wskazuje zdolność materiału do koncentracji strumienia magnetycznego. jest kluczowym parametrem w inżynierii magnetycznej.
Reluctance, oznaczana symbolem R, jest miarą oporu obwodu magnetycznego wobec przepływu strumienia magnetycznego.

Reluctance można obliczyć przy użyciu wzoru:
R = l / (μ × A)

Gdzie:
R: Opór magnetyczny (1/H)
l: Długość ścieżki magnetycznej (m)
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)

Przykładowo, dla l = 0,2 m, μ = 4π × 10⁻⁷ H/m i A = 0,01 m², opór magnetyczny wynosi około 1,59 × 10⁶ 1/H.

Znajomość oporu magnetycznego umożliwia optymalizację działania systemów takich jak elektromagnesy, transformatory czy silniki elektryczne.
Reluktancja to miara oporu, jaki obwód magnetyczny stawia przepływowi strumienia magnetycznego. Projektowanie i geometria magnesu oraz otaczających materiałów wpływają na reluktancję i wydajność obwodów magnetycznych.
Pozostałość magnetyczna wskazuje zdolność magnesu do zachowania swoich właściwości magnetycznych w czasie. Pozwala ocenić długoterminową stabilność i przydatność magnesów w różnych zastosowaniach.
Odrzucanie odnosi się do zjawiska, w którym takie same bieguny magnesów neodymowych (np. północny do północnego) wywierają siłę, która je odpycha. Siła odpychania jest proporcjonalna do siły magnetycznej i odległości między magnesami.
Obejmuje wykorzystanie materiałów ferromagnetycznych lub przewodników magnetycznych do prowadzenia pola magnetycznego. Dzięki odpowiedniemu projektowi ścieżki powrotnej można zmaksymalizować wydajność systemu i zminimalizować straty magnetyczne.

Litera: S

Shear force, oznaczana symbolem Fs, odnosi się do siły wymaganej do przesunięcia magnesu wzdłuż powierzchni styku w kierunku równoległym do płaszczyzny kontaktu.

Wzór dla siły ścinania to:
Fs = F × tan(θ)

Gdzie:
F: Siła przyciągania (N)
θ: Kąt nachylenia powierzchni styku (rad)

Im większy kąt nachylenia, tym większa siła wymagana do przesunięcia magnesu.

Parametr ten odgrywa kluczową rolę w aplikacjach takich jak mocowania magnetyczne lub mechanizmy przesuwne.
Biegun południowy jest jednym z dwóch podstawowych biegunów magnetycznych magnesu. Magnes o biegunie południowym przyciąga biegun północny innego magnesu, co skutkuje siłą przyciągania. Biegun południowy odgrywa kluczową rolę w układach magnetycznych i projektach wymagających precyzyjnego pozycjonowania.
Proces ten polega na konfiguracji magnesów w szeregu lub równolegle, co intensyfikuje pole magnetyczne. To rozwiązanie pozwala na uzyskanie silniejszych interakcji magnetycznych w takich zastosowaniach, jak separatory magnetyczne, uchwyty czy czujniki.

Litera: T

Magnesy neodymowe mogą osiągać wysokie wartości gęstości strumienia, mierzone w teslach (T) lub militeslach (mT). Tesla znajduje szerokie zastosowanie w ocenie wydajności magnesów oraz projektowaniu precyzyjnych systemów magnetycznych.
Dzięki zdefiniowanemu kierunkowi magnesowania, magnesy anizotropowe osiągają większą efektywność. Z kolei magnesy izotropowe można magnesować w dowolnym kierunku, co czyni je bardziej uniwersalnymi. Magnesy izotropowe są często używane w prostych aplikacjach z uwagi na swobodę w wyborze kierunku magnesowania.

Litera: W

Jednostka ta została nazwana na cześć Wilhelma Eduarda Webera, niemieckiego fizyka i pioniera teorii elektromagnetyzmu. Pomaga w analizie skuteczności magnesów w aplikacjach takich jak generatory, silniki czy systemy przechowywania energii.
Waga magnesu neodymowego jest istotnym parametrem wpływającym na jego zastosowania. Można ją łatwo obliczyć na podstawie jego gęstości i objętości przy użyciu wzoru:
m = ρ × V, gdzie:
m - masa magnesu (w gramach lub kilogramach).
ρ - gęstość magnesu (zwykle 7.5 g/cm³).
V - objętość magnesu (w cm³ lub m³).

Dla magnesu o typowej gęstości 7.5 g/cm³ i objętości 10 cm³, waga wynosi:
m = 7.5 × 10 = 75 g.

Obliczenie wagi pomaga lepiej dobrać magnes do konkretnego zastosowania.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98