magnesy neodymowe

Co to są magnesy neodymowe? Na poniższym wykazie znajdują się praktycznie wszystkie magnesy neodymowe które posiadamy na stanie sprawdź cennik magnesów

uchwyt z magnesem do poszukiwań w wodzie F 550 BlackSiver z mocnym uchem bocznym i liną

Gdzie kupić bardzo mocny UM magnes do poszukiwań? Uchwyty z magnesami w szczelnej, solidnej stalowej obudowie nadają się doskonale do stosowania w niedogodnych, ciężkich pogodowych warunkach, między innymi w czasie opadów śniegu i deszczu zobacz...

magnesy z uchwytem

Magnetyczne uchwyty mogą być wykorzystywane do ułatwienia procesów produkcyjnych, poszukiwań dna morza lub do odnajdywania skał kosmicznych ze złota. Mocowania to śruba 3x [M10] duży udźwig sprawdź...

Gwarantujemy wysyłkę zamówienia magnesów w dzień zlecenia jeżeli zamówienie przyjęte jest przed 14:00 w dni robocze.

logo Dhit sp. z o.o.

Słownik terminologii magnetycznej

Jak odnaleźć się w świecie magnesów neodymowych?

Serdecznie witamy w naszym kompleksowym słowniku dedykowanym fascynujący świat magnesów neodymowych. Jako wiodący ekspert w dostarczaniu wysokiej jakości rozwiązań magnetycznych, doskonale rozumiemy, jak istotne jest posiadanie gruntownej znajomości na temat podstawowych zagadnień z tej unikalnej dziedziny. Ten słownik został starannie opracowany, aby stać się nieocenionym źródłem informacji dla wszystkich, zainteresowanego magnesami – bez względu na to, czy jesteś ekspertem branżowym, pasjonatem, czy entuzjastą nauki magnesów.

W naszym słowniku znajdziesz przystępne i wyczerpujące wyjaśnienia kluczowych terminów i zagadnień związanych z magnesami neodymowymi. Od zasad działania pól magnetycznych i natężenia pola, przez zależności materiałowe, aż po rodzaje materiałów i zaawansowane technologie magnetyczne – każda definicja została opracowana z myślą o poszerzeniu Twojej wiedzy oraz przystępności nawet najbardziej skomplikowanych koncepcji. Bez względu na, czy zgłębiasz zastosowania magnesów w przemyśle, eksperymentujesz naukowo, czy realizujesz własne projekty DIY, ten słownik pomoże Ci odnaleźć się.

Poznaj niezwykły świat magnesów neodymowych z łatwością. Rozwijaj swoje zrozumienie, zdobywaj nową wiedzę i poznawaj zastosowania tych wyjątkowych materiałów, zgłębiając terminy i koncepcje, które opisują ich działanie i wszechstronność. Pozwól, by ten słownik Twoim narzędziem w odkrywaniu rozwijającej się dziedziny technologii magnetycznych.

Litera: A

Przerwa powietrzna to przestrzeń wypełniona powietrzem, która oddziela magnes od ferromagnetyka. Większa przerwa powoduje osłabienie pola magnetycznego. Wzór: B = μ0(H - M), gdzie B to indukcja magnetyczna, μ0 to przenikalność próżni, H to natężenie pola, a M to magnetyzacja.
Materiał anizotropowy, takie jak neodymowe magnesy, ma właściwości zależne od kierunku. Magnesy anizotropowe są mocniejsze od izotropowych, ale ich magnesowanie odbywa się w precyzyjnie określonej osi.
Wyżarzanie to metoda eliminacji naprężeń wewnętrznych w materiałach magnetycznych. Przeprowadza się je w kontrolowanych warunkach, zwykle w atmosferze ochronnej, aby zapobiec degradacji materiału. Wyżarzanie poprawia strukturę i pozwala uzyskać lepszą wydajność w zastosowaniach.
Magnesowanie osiowe oznacza, że bieguny magnetyczne są rozmieszczone wzdłuż osi magnesu, a linie siły magnetycznej przebiegają wzdłuż długości magnesu. Jest to powszechnie stosowane w magnesach pierścieniowych oraz kulistych. Wzór: Bz = (Br/2) * [(L + 2z) / (L^2 + 4z^2)^0.5 - (L - 2z) / (L^2 + 4z^2)^0.5].

Litera: B

Indukcja magnetyczna B to natężenie pola przechodzącego przez obiekt. Jest mierzona w teslach. Wzór: B = μ0(H + M), gdzie μ0 to przenikalność próżni, H to pole magnetyczne, a M to magnetyzacja.
Pętla histerezy to wykres zależności między indukcją magnetyczną (B) a siłą magnesowania. Pozwala określić takie właściwości jak energia strat magnetycznych. Pętla histerezy jest niezbędna przy ocenie materiałów stosowanych w transformatorach.
Indukcja remanentna Bd to pozostałość, które pozostaje w magnesie po usunięciu siły magnesowania. Jest mierzona w lub gaussach i reprezentuje zdolność materiału do utrzymywania resztkowego namagnesowania.
Nachylenie linii pracy, oznaczone jako Bd/Hd, to współczynnik opisujący przenikalność magnetyczną materiału. Wzór: Bd/Hd = (Br - Hd) / Hd. Jest to kluczowy parametr przy projektowaniu układów elektromagnetycznych.
Bg oznacza średnią wartość indukcji magnetycznej w przerwie powietrznej. Jest to ważny element przy projektowaniu urządzeń opartych na obwodach magnetycznych. Wzór: Bg = Φ / A, gdzie Φ to strumień magnetyczny, a A to powierzchnia przerwy powietrznej.

Litera: C

System jednostek C.G.S. jest stosowany głównie w magnetyzmie do opisu właściwości materiałów. Pomimo że został zastąpiony, C.G.S. wciąż znajduje zastosowanie w danych dotyczących magnetyzmu. Jednostki w tym systemie obejmują oraz długość, masę i czas.
Obwód zamknięty odnosi się do konfiguracji, w której strumień magnetyczny tworzy pełną pętlę. Wykorzystuje się materiały o wysokiej przenikalności, które zapewniają ciągłość przepływu pola magnetycznego. Takie obwody są kluczowe w zastosowaniach wymagających kontrolowanych pól magnetycznych.
Siła koercji, oznaczana jako Hc, to natężenie pola potrzebne do rozmagnesowania materiału. Parametr ten mierzy trwałość magnetycznych właściwości. Wzór: Hc = -M/χ, gdzie M to magnetyzacja, a χ to przenikalność magnetyczna.
Koercja to miara odporności materiału magnetycznego na rozmagnesowanie. Parametr ten jest istotny przy projektowaniu trwałych magnesów stosowanych w silnikach i generatorach.
Koercja wewnętrzna określa odporność materiału na demagnetyzację. Mierzy siłę demagnetyzującą na indukcji wewnętrznej (Bi). Materiały o wysokiej koercji zapewniają stabilność magnetyczną.
Temperatura Curie to punkt, w którym materiały ferromagnetyczne tracą swoje właściwości magnetyczne. Po przekroczeniu tej temperatury struktura magnetyczna ulega dezorganizacji. Wzór: Tc = (2kB / μ0) * J0^2 / (χ), gdzie kB to stała Boltzmanna, a J0 to moment magnetyczny.

Litera: D

Rozmagnesowanie odnosi się do procesu redukcji lub eliminacji magnetyzacji. Metody obejmują lub techniki rozmagnesowania, takie jak odmagnesowywanie. Proces ten jest kluczowy w zastosowaniach wymagających lub całkowitego usunięcia magnetyzmu.
Krzywa rozmagnesowania przedstawia zależność między indukcją magnetyczną (B) a siłą magnesowania (H). Pokazuje właściwości histerezy materiału, takie jak charakterystyka stabilności magnetycznej. Jest to narzędzie używane w projektowaniu magnetycznych układów.
Siła rozmagnesowująca odnosi się do zewnętrznego pola magnetycznego, które wprowadza rozmagnesowanie. Pozwala to na kontrolowanie poziomu magnetyzacji w materiałach.
Rozmagnesowany materiał to taki, w którym całkowicie usunięto resztkową magnetyzację. Stan ten osiąga się poprzez lub inne techniki rozmagnesowania, np. ogrzewanie. Rozmagnesowanie jest ważne w eliminacji wpływów magnetycznych.
Gęstość magnesu neodymowego, wynosząca średnio około 7.5 g/cm³, jest jednym z kluczowych parametrów określających jego właściwości magnetyczne. Gęstość można łatwo obliczyć za pomocą wzoru:
ρ = m / V, gdzie:
ρ - gęstość (w g/cm³ lub kg/m³).
m - masa magnesu (w gramach lub kilogramach).
V - objętość magnesu (w cm³ lub m³).

Przykład: Dla magnesu o masie 150 g i objętości 20 cm³, gęstość wynosi:
ρ = 150 / 20 = 7.5 g/cm³.

Znajomość gęstości magnesu pozwala lepiej przewidywać jego siłę magnetyczną i trwałość.
Materiał diamagnetyczny wykazuje słabe odpychanie od pola magnetycznego. Pod wpływem pola zewnętrznego generuje pole przeciwne. Zjawisko to wynika z które tworzą przeciwdziałające pole magnetyczne.
Średnica to w linii prostej na powierzchni magnesu tarczowego, pierścieniowego lub sferycznego. Jest to kluczowy parametr przy precyzyjnym dopasowaniu komponentów.
Magnesy diametralnie namagnesowane mają bieguny umieszczone na przeciwnych stronach średnicy. Są przydatne w zastosowaniach wymagających interakcji radialnych lub obrotowych.
Tolerancja wymiarowa określa dopuszczalne odchylenie od specyfikacji wymiarowych. Jest kluczowa przy integracji magnetycznych komponentów w układzie.
Wymiary odnoszą się do mierzalnych właściwości fizycznych magnesu. Precyzja wymiarowa jest kluczowe dla poprawnego działania systemów magnetycznych.
Kierunek magnesowania określa orientację domen magnetycznych. Jest to cecha kluczowa, która wpływa na interakcje pola z innymi elementami.
Domeny to strefy w materiale magnetycznym, w których tworząc lokalne pola magnetyczne. Mogą być zmieniane przez zewnętrzne pola magnetyczne, temperaturę lub naprężenia.

Litera: E

Prądy wirowe to przepływy elektryczności powstałe w materiałach przewodzących podczas działania zmiennego pola magnetycznego. Powodują one problemy z efektywnością. Stosowanie rdzeni laminowanych lub osłon magnetycznych minimalizuje ich wpływ i zwiększa wydajność.
Elektromagnes to magnes wytworzony przez przepływ prądu elektrycznego. Zarządzanie prądem pozwala kontrolować pole magnetyczne. Elektromagnesy są szeroko stosowane w takich jak silniki, generatory czy systemy MRI.
Energia magnetyczna to wskaźnik zdolności magnesu do dostarczania energii. Obliczana jako produkt dwóch parametrów na krzywej rozmagnesowania. Wyrażana w różnych jednostkach. Jest ważnym wskaźnikiem przy ocenie ich efektywności w aplikacjach.
Energia magnetyczna to maksymalna energia zgromadzona w magnesie. Magnesy o wyższej energii mają lepszą wydajność.

Litera: F

Ferryty to substancje składające się głównie z tlenku żelaza (Fe2O3). Łączą niską przewodność elektryczną z wysoką przenikalnością magnetyczną. Używane w transformatorach, induktorach czy urządzeniach telekomunikacyjnych.
Materiał ferromagnetyczny charakteryzuje się silnymi właściwościami magnetycznymi. Atomy w takim materiale układają się równolegle pod wpływem zewnętrznego pola. Przykłady to oraz ich stopy. Są one szeroko stosowane dzięki zdolności do utrzymania namagnesowania.
Gęstość strumienia magnetycznego, oznaczana jako wskazuje ilość strumienia przechodzącego przez jednostkę powierzchni. Mierzona w Teslach (T) lub Gaussach (G). Jest to kluczowy parametr przy projektowaniu układów magnetycznych.
Miernik strumienia magnetycznego służy do pomiaru indukcji magnetycznej (B). Wykorzystuje różne technologie, takie jak do dokładnych pomiarów w punktach przestrzeni. Jest ważnym narzędziem inżynierskim.

Litera: G

Gauss to nazwa pochodzi od niemieckiego fizyka Karla Friedricha Gaussa. Jeden Gauss (G) odpowiada 10^-4 Tesli (T). Często używany w zastosowaniach laboratoryjnych.
Gaussomierz to urządzenie do pomiaru siły pola magnetycznego. Stosuje sensory efektu Halla. Znajduje zastosowanie w wielu gałęziach inżynierii i nauki.
Gilbert to jednostka siły magnetomotorycznej (mmf). Jeden Gilbert odpowiada dawnej miarze zastępowanej w SI jednostką amperozwojów (At).
Klasa magnesu odnosi się do właściwości i wydajności w określonych zastosowaniach. Wyższe klasy oferują lepsze pole magnetyczne i stabilność.

Litera: H

Efekt ten znajduje zastosowanie w pomiarach pola magnetycznego i detekcji pozycji. Czujniki Halla są szeroko stosowane w elektronice, takich jak systemy ABS w pojazdach.
Siła koercji (Hc) oznacza natężenie pola magnetycznego wymagane do zmniejszenia indukcji szczątkowej (Br) materiału do zera. Wyrażana w jednostkach SI. Wyższe wartości Hc wskazują na większą stabilność magnetyczną materiału.
Hd to natężenie pola magnetycznego potrzebne do osiągnięcia określonej indukcji remanentnej (Bd). Mierzona w różnych jednostkach magnetycznych.
Magnes o wysokim gradiencie pola wytwarza z dużą precyzją kontroluje gradient. Zastosowania obejmują czy badania naukowe wymagające zaawansowanych parametrów pola.
Hm oznacza największe natężenie pola magnetycznego, jakie można zastosować przed osiągnięciem nasycenia materiału. Jest istotna przy ocenie stabilności i ograniczeń operacyjnych komponentów magnetycznych.
Pole jednorodne charakteryzuje się stałą wartością i kierunkiem. Jest np. w spektroskopii lub kalibracji urządzeń.
Magnes podkowiasty ma zwiększając siłę pola w tej przestrzeni. Popularny w edukacji, detekcji metali.
Efektywna siła magnesowania (Hs) to pole potrzebne do pełnego namagnesowania materiału do nasycenia. Mierzona w oerstedach (Oe) lub kiloamperach na metr (kA/m).
Wykres histerezy, zwany również permeametrem, przedstawia zmiany indukcji magnetycznej (B) w funkcji siły magnesowania (H). Stosowany w optymalizacji projektów magnetycznych.
Pętla histerezy to graficzne przedstawienie relacji między indukcją magnetyczną (B) a siłą magnesowania (H). Dostarcza informacji o zachowaniu materiału podczas cykli magnesowania.
Histereza odnosi się do cechy materiałów magnetycznych. Straty histerezowe to przemiany energii w ciepło. Minimalizacja strat histerezowych poprawia efektywność układów magnetycznych.

Litera: I

Średnica wewnętrzna (ID) to wymiar wewnętrzny obiektu pustego w środku, np. magnesu, rury czy pierścienia. Jest istotnym parametrem w projektowaniu układów magnetycznych.
Indukcja magnetyczna (B) reprezentuje ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię. Wyrażana w Teslach (T) lub Gaussach (G). Jest kluczowa dla projektowania i analizy układów magnetycznych.
Straty nieodwracalne to trwałe zmniejszenie magnetyzacji materiału. Powodują utrudnienia w długoterminowym użytkowaniu magnesów.
Materiał izotropowy wykazuje jednakowe właściwości magnetyczne we wszystkich kierunkach. stosowany w zastosowaniach wymagających równomiernego zachowania magnetycznego.

Litera: K

Przytrzymywacz magnetyczny to element wykonany z miękkiego żelaza lub materiału ferromagnetycznego, umieszczany na lub pomiędzy biegunami magnesu stałego. Zapewnia niską oporność magnetyczną dla strumienia. Stosowany głównie z magnesami Alnico lub starszymi konstrukcjami.
Kilogauss (kG) to jednostka służąca do wyrażania indukcji magnetycznej. Jeden kilogauss (1 kG) odpowiada 1000 gaussom. Jednostka ta znajduje zastosowanie w badaniach naukowych i testach magnesów.

Litera: L

Linia obciążenia przedstawia graficzny związek między indukcją remanentną (Bd) a siłą rozmagnesowującą (Hd). Pomaga w ocenie zachowania i stabilności materiału magnetycznego.
Magnetyt to naturalnie występujący materiał magnetyczny składający się z tlenku żelaza (Fe3O4). posiada unikalne właściwości wynikające z ułożenia domen magnetycznych.

Litera: M

Magnes to obiekt wytwarzający pole magnetyczne, posiadający bieguny magnetyczne. znajduje zastosowanie w elektronice, silnikach, generatorach i nośnikach magnetycznych.
Zestaw magnetyczny to system składający się z różnych komponentów magnetycznych. Wykorzystywany w sensorach, separatorach magnetycznych.
Oś magnetyczna to ścieżka preferowanego przepływu strumienia magnetycznego. kluczowa dla analizy zachowania magnesu i jego interakcji z innymi elementami magnetycznymi.
Obwód magnetyczny to ścieżka, przez którą przepływa strumień magnetyczny. jest kluczowy w projektowaniu urządzeń magnetycznych.
Energia magnetyczna to energia zgromadzona w polu magnetycznym. związana z siłą pola magnetycznego i objętością przestrzeni.
Pole magnetyczne (B) to podstawowe zjawisko elektromagnetyczne. tworzone przez magnesy lub prądy elektryczne.
Natężenie pola magnetycznego (H) to intensywność pola magnetycznego w obwodzie. Zależy od prądu płynącego przez przewodnik.
Strumień magnetyczny to ilość linii pola magnetycznego przechodzących przez określony obszar. Wyrażany w weberach (Wb).
Gęstość strumienia magnetycznego, oznaczana jako B, jest miarą siły lub koncentracji pola magnetycznego. Reprezentuje ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię.

Oblicza się ją za pomocą równania:
B = Φ / A

Gdzie:
B: Magnetic flux density (Tesla, Gauss)
Φ: Magnetic flux (Weber)
A: Surface area (m²)

Jeśli powierzchnia wynosi 0,05 m², a strumień magnetyczny to 0,002 Weber, wynikowa gęstość wynosi 0,04 Tesli.

Wysoka wartość B oznacza silniejsze pole magnetyczne, co jest istotne w zastosowaniach przemysłowych i medycznych.
Pętla histerezy ilustruje zachowanie materiału magnetycznego podczas cykli magnesowania i rozmagnesowywania. Materiał z węższą pętlą ma mniejsze straty energii.
Indukcja magnetyczna mierzy ilość strumienia magnetycznego przechodzącego przez jednostkę powierzchni. Wyższe wartości indukcji wskazują na silniejsze pole magnetyczne.
Linia siły magnetycznej, zwana także linią pola magnetycznego, to ścieżka wskazująca, jak poruszałyby się bieguny magnetyczne w danym polu. Gęstość linii pola odzwierciedla siłę pola w różnych miejscach.
Ścieżka magnetyczna odnosi się do trasy, którą podąża strumień magnetyczny w obwodzie magnetycznym lub systemie. minimalizuje straty magnetyczne.
Jest kluczowym parametrem w projektowaniu obwodów magnetycznych. Materiały o wysokiej przenikalności są efektywniejsze w koncentracji pola magnetycznego.
Bieguny magnetyczne to regiony, gdzie pole magnetyczne jest najsilniejsze. Zrozumienie interakcji między biegunami jest kluczowe w projektowaniu układów magnetycznych.
Nasycenie magnetyczne określa maksymalne natężenie pola magnetycznego, jakie może osiągnąć materiał. Ten parametr jest kluczowy przy wyborze materiałów do zastosowań w wysokich polach magnetycznych.
Magnesowanie to proces nadawania materiałowi właściwości magnetycznych przez uporządkowanie domen magnetycznych. Zdolność do magnesowania jest istotna w projektowaniu magnesów trwałych i elektromagnesów.
Magnetyzacja odnosi się do rezultatu ustawienia momentów magnetycznych atomów lub cząsteczek w preferowanej orientacji. Można ją osiągnąć poprzez kontakt z polem magnetycznym, przepływ prądu elektrycznego lub inne magnesy.
Krzywa magnetyzacji, zwana także krzywą rozmagnesowania lub krzywą B-H, przedstawia graficzną reprezentację właściwości magnetycznych materiału. Dostarczają istotnych informacji o charakterystyce materiału, jego nasyceniu i stabilności magnetycznej.
Namagnesowany oznacza stan materiału, w którym posiada on pole magnetyczne lub został namagnesowany. Można go uzyskać poprzez ekspozycję na pole magnetyczne, kontakt z magnesami lub przepływ prądu elektrycznego.
Siła magnetomotoryczna (mmf) to miara zdolności do generowania pola magnetycznego w obwodzie magnetycznym. Analogiczna do siły elektromotorycznej (EMF) w obwodach elektrycznych.
Materiał w kontekście magnetyzmu odnosi się do klasyfikowanej jako ferromagnetyczna, paramagnetyczna lub diamagnetyczna. Zachowanie magnetyczne materiału zależy od jego struktury atomowej i molekularnej.
Maximum energy product, oznaczany jako BHmax, reprezentuje maksymalną zdolność magnesu do gromadzenia i uwalniania energii magnetycznej.

Oblicza się go za pomocą równania:
BHmax = B × H

Gdzie:
B: Gęstość strumienia magnetycznego (Tesla)
H: Natężenie pola magnetycznego (A/m)

Dla magnesu o wartości B = 1,2 T i H = 800 kA/m, BHmax wynosi 960 kJ/m³.

BHmax jest kluczowym parametrem w ocenie wydajności magnesów, zwłaszcza w projektach wymagających maksymalnej efektywności energetycznej.
Maksymalna temperatura pracy (Tmax) to najwyższa temperatura, przy której materiał magnetyczny może działać bez znaczącej degradacji lub utraty właściwości magnetycznych. temperatura powyżej Tmax może prowadzić do rozmagnesowania materiału.
Makswell to reprezentuje ilość strumienia magnetycznego przechodzącego przez powierzchnię jednego centymetra kwadratowego w polu magnetycznym o sile jednego gausa. kluczowa w historycznych i naukowych zastosowaniach magnetycznych.
Mega Gauss Oersteds (MGOe) to jednostka używana do wyrażania maksymalnego iloczynu energii magnetycznej (BHmax) magnesów trwałych. 1 MGOe odpowiada milionowi gauss-oerstedów, co czyni ją wygodną jednostką do porównywania wydajności i siły magnetycznej magnesów w zastosowaniach przemysłowych.
Monopol magnetyczny odnosi się do pojęcia teoretycznego rozważanego w fizyce, zwłaszcza w fizyce cząstek. do tej pory monopole nie zostały zaobserwowane w naturze.

Litera: N

Klasa N odnosi się do oznaczenia liczbowego, np. N35, N42 czy N52, które wskazuje maksymalny iloczyn energii magnetycznej (BHmax). Wyższe wartości klasy N odpowiadają silniejszym magnesom o lepszych właściwościach magnetycznych.
Biegun północny to jeden z dwóch podstawowych biegunów magnetycznych magnesu. Biegun północny magnesu przyciąga biegun południowy innego magnesu, generując siłę przyciągania magnetycznego.

Litera: O

Oersted to nazwa pochodzi od Hansa Christiana Oersteda, który odkrył zależność między prądami elektrycznymi a polami magnetycznymi. jednostka używana głównie w systemie CGS.
Obwód otwarty odnosi się do stanu, w którym obwód magnetyczny nie jest zamknięty lub kompletny. W takim stanie linie pola magnetycznego nie mogą tworzyć zamkniętej pętli, co skutkuje osłabieniem pola magnetycznego.
Orientacja odnosi się do ustawienia lub wyrównania magnesu, materiału magnetycznego lub elementu magnetycznego względem osi odniesienia. może znacząco wpływać na interakcje między magnesami i wydajność obwodów magnetycznych.

Litera: P

Materiały paramagnetyczne to substancje, które wykazują paramagnetyzm i są słabo przyciągane do pól magnetycznych. Magnetyzm tych materiałów zanika po usunięciu pola zewnętrznego, co odróżnia je od materiałów ferromagnetycznych.
Paramagnetyzm to właściwość materiałów, które są słabo przyciągane do pól magnetycznych. Materiał traci magnetyzm po usunięciu pola zewnętrznego, co wynika z obecności niesparowanych elektronów.
Magnes trwały to materiał lub obiekt, który zachowuje swoje właściwości magnetyczne na stałe. Jest wykonany z materiałów o silnych właściwościach magnetycznych, takich jak żelazo, nikiel czy stopy kobaltu.
Magnesy trwałe generują pole magnetyczne bez potrzeby zewnętrznego zasilania. Znajdują zastosowanie w urządzeniach wymagających stałego pola magnetycznego, takich jak głośniki, silniki i generatory.
cecha pozwalająca materiałowi wspierać tworzenie pola magnetycznego. wartość przenikalności zależy od składu chemicznego i struktury materiału.
Przenikalność magnetyczna, oznaczana symbolem P, określa łatwość, z jaką strumień magnetyczny może przepływać przez określony obwód magnetyczny.

Przenikalność można obliczyć za pomocą wzoru:
P = (μ × A) / l

Gdzie:
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)
l: Długość ścieżki magnetycznej (m)

Dla materiału o μ = 4π × 10⁻⁷ H/m, A = 0,01 m² i l = 0,1 m, permeance wynosi 1,26 × 10⁻⁵ H.

Permeance jest kluczowym parametrem w projektowaniu obwodów magnetycznych, szczególnie w aplikacjach wymagających minimalnych strat magnetycznych.
Współczynnik przenikalności to stosunek remanencji (Br) do siły rozmagnesowania (Hd) w materiale magnetycznym. jest istotny przy projektowaniu efektywnych obwodów magnetycznych.
Zapewnia ochronę przed korozją, utlenianiem i demagnetyzacją, co zwiększa trwałość magnesów. Najczęściej stosowane materiały powłokowe to nikiel, miedź, epoksyd, cynk, złoto czy cyna.
bieguny o tej samej polaryzacji odpychają się, a o przeciwnych przyciągają. odgrywa istotną rolę w projektowaniu urządzeń opartych na magnesach.
Biegun magnetyczny odnosi się do jednego z dwóch końców magnesu, gdzie pole magnetyczne jest najsilniejsze: północnego lub południowego. Ich położenie i właściwości są kluczowe dla optymalizacji wydajności w zastosowaniach magnetycznych.
Siła przyciągania, czasem określana jako siła chwytu, opisuje zdolność magnesu do utrzymania przyczepności. Można ją przybliżenie obliczyć za pomocą wzoru:
F = B² × A / (2 × μ₀), gdzie:
F - siła przyciągania (w niutonach, N).
B - gęstość strumienia magnetycznego na powierzchni magnesu (w teslach, T).
A - powierzchnia styku magnesu z materiałem (w m²).
μ₀ - przenikalność magnetyczna próżni (4π × 10⁻⁷ H/m).

Przykład: Jeśli gęstość strumienia magnetycznego wynosi 1.2 T, a powierzchnia styku magnesu to 0.005 m², siła przyciągania wynosi:
F = (1.2)² × 0.005 / (2 × 4π × 10⁻⁷) ≈ 572 N.

Litera: R

Metale ziem rzadkich to grupa pierwiastków chemicznych, takich jak neodym, które stanowią kluczowy składnik magnesów neodymowych. Dzięki dużej sile magnetycznej są wykorzystywane w przemyśle, elektronice i technologiach konsumenckich.
Magnesy ziem rzadkich, takie jak neodymowe, charakteryzują się wyjątkową siłą magnetyczną. Ich wysoka wydajność sprawia, że są niezastąpione w wielu zastosowaniach.
Względna przenikalność magnetyczna to miara, jak łatwo materiał może zostać namagnesowany w porównaniu do próżni. Magnesy neodymowe wykazują wysoką względną przenikalność, co umożliwia efektywne projektowanie obwodów magnetycznych.
Reluctance, oznaczana symbolem R, jest miarą oporu obwodu magnetycznego wobec przepływu strumienia magnetycznego.

Reluctance można obliczyć przy użyciu wzoru:
R = l / (μ × A)

Gdzie:
R: Opór magnetyczny (1/H)
l: Długość ścieżki magnetycznej (m)
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)

Przykładowo, dla l = 0,2 m, μ = 4π × 10⁻⁷ H/m i A = 0,01 m², opór magnetyczny wynosi około 1,59 × 10⁶ 1/H.

Znajomość oporu magnetycznego umożliwia optymalizację działania systemów takich jak elektromagnesy, transformatory czy silniki elektryczne.
Reluktancja to miara oporu, jaki obwód magnetyczny stawia przepływowi strumienia magnetycznego. Projektowanie i geometria magnesu oraz otaczających materiałów wpływają na reluktancję i wydajność obwodów magnetycznych.
Remanencja, oznaczana często jako Bd, to miara magnetyzmu resztkowego, który pozostaje w magnesie neodymowym po jego nasyceniu i usunięciu zewnętrznego pola magnetycznego. Jest to kluczowy parametr w ocenie siły i wydajności magnesu.
Zjawisko to wynika z przeciwnych pól magnetycznych generowanych przez magnesy, które się nawzajem odpychają. Siła odpychania jest proporcjonalna do siły magnetycznej i odległości między magnesami.
Ścieżka powrotna w obwodzie magnetycznym z magnesami neodymowymi odnosi się do drogi, którą strumień magnetyczny przemieszcza się, aby zamknąć obwód magnetyczny. Jest kluczowym elementem w projektowaniu efektywnych obwodów magnetycznych.

Litera: S

Siła ścinania, oznaczana symbolem Fs, odnosi się do siły wymaganej do przesunięcia magnesu wzdłuż powierzchni styku w kierunku równoległym do płaszczyzny kontaktu.

Siłę ścinania można obliczyć za pomocą wzoru:
Fs = F × tan(θ)

Gdzie:
F: Siła przyciągania (N)
θ: Kąt nachylenia powierzchni styku (rad)

Im większy kąt nachylenia, tym większa siła wymagana do przesunięcia magnesu.

Parametr ten odgrywa kluczową rolę w aplikacjach takich jak mocowania magnetyczne lub mechanizmy przesuwne.
To biegun, który wskazuje w stronę geograficznego bieguna południowego Ziemi, gdy jest swobodnie zawieszony. Magnes o biegunie południowym przyciąga biegun północny innego magnesu, co skutkuje siłą przyciągania. Biegun południowy odgrywa kluczową rolę w układach magnetycznych i projektach wymagających precyzyjnego pozycjonowania.
Układanie w stos odnosi się do praktyki łączenia wielu magnesów neodymowych, aby stworzyć zestaw o zwiększonej całkowitej sile magnetycznej. Układanie magnesów w stos jest popularne w aplikacjach wymagających dużej siły przyciągania.

Litera: T

Tesla to jednostka miary gęstości strumienia magnetycznego, która określa siłę i intensywność pola magnetycznego. Tesla znajduje szerokie zastosowanie w ocenie wydajności magnesów oraz projektowaniu precyzyjnych systemów magnetycznych.
Dzięki zdefiniowanemu kierunkowi magnesowania, magnesy anizotropowe osiągają większą efektywność. Z kolei magnesy izotropowe można magnesować w dowolnym kierunku, co czyni je bardziej uniwersalnymi. Magnesy anizotropowe znajdują zastosowanie w aplikacjach o wysokich wymaganiach technologicznych.

Litera: W

Jednostka ta została nazwana na cześć Wilhelma Eduarda Webera, niemieckiego fizyka i pioniera teorii elektromagnetyzmu. Pomaga w analizie skuteczności magnesów w aplikacjach takich jak generatory, silniki czy systemy przechowywania energii.
Waga magnesu neodymowego jest istotnym parametrem wpływającym na jego zastosowania. Można ją łatwo obliczyć na podstawie jego gęstości i objętości przy użyciu wzoru:
m = ρ × V, gdzie:
m - masa magnesu (w gramach lub kilogramach).
ρ - gęstość magnesu (zwykle 7.5 g/cm³).
V - objętość magnesu (w cm³ lub m³).

Dla magnesu o typowej gęstości 7.5 g/cm³ i objętości 10 cm³, waga wynosi:
m = 7.5 × 10 = 75 g.

Znajomość wagi jest kluczowa w projektach, gdzie ważna jest równowaga masy i siły magnetycznej.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98