magnesy neodymowe

Neodymowe magnesy - czym są? Magnesy z neodymu dostępne aktualnie w naszym magazynie można sprawdzić na poniższym spisie zobacz ofertę magnesów

magnesy do poszukiwań F300 GOLD z mocnym uchem bocznym i liną

Gdzie kupić mocny UM magnes neodymowy do poszukiwań? Uchwyty magnetyczne w trwałej i szczelnej obudowie doskonale się nadają do używania w trudnych, wymagających pogodowych warunkach, między innymi w czasie opadów śniegu i deszczu zobacz więcej info...

uchwyty magnetyczne

Uchwyty magnetyczne mogą być używane do usprawniania produkcji, eksploracji podwodnych terenów lub do poszukiwania skał kosmicznych ze złota. Mocowania to śruba 3x [M10] duża moc sprawdź...

Ciesz się wysyłką zamówienia w dniu zakupu jeśli zlecenie złożone jest przed 14:00 w dni pracujące.

logo Dhit sp. z o.o.

Słownik terminologii magnetycznej

Jak odnaleźć się w świecie magnesów neodymowych?

Cześć w naszym szczegółowym słowniku poświęconym fascynujący świat magnesów neodymowych. Jako wiodący ekspert w dostarczaniu najlepszych rozwiązań magnetycznych, doskonale rozumiemy, jak kluczowe jest posiadanie gruntownej znajomości na temat podstawowych zagadnień z tej wyjątkowej dziedziny. Ten słownik został starannie opracowany, aby stać się kluczowym źródłem informacji dla wszelkich zainteresowanych, zainteresowanego magnesami – czy jesteś doświadczonym specjalistą branżowym, pasjonatem, czy kimś zainteresowanym nauki magnesów.

W naszym słowniku znajdziesz jasne i szczegółowe wyjaśnienia podstawowych pojęć i tematów związanych z magnesami neodymowymi. Od podstaw funkcjonowania pól magnetycznych i indukcji magnetycznej, przez krzywe magnesowania, aż po rodzaje materiałów i zaawansowane technologie magnetyczne – każda definicja została przygotowana dla poszerzeniu Twojej wiedzy oraz łatwości zrozumienia nawet złożonych koncepcji. Niezależnie od tego, czy zgłębiasz zastosowania magnesów w przemyśle, realizujesz projekty badawcze, czy realizujesz własne projekty DIY, ten słownik będzie Twoim niezawodnym przewodnikiem.

Odkrywaj fascynujący świat magnesów neodymowych z łatwością. Dowiaduj się więcej, odkrywaj nowe informacje i wykorzystuj potencjał tych niezastąpionych materiałów, czytając o i koncepcje, które wpływają na ich użyteczność i wszechstronność. Pozwól, by ten słownik Twoim przewodnikiem w poznawaniu dynamicznego krajobrazu technologii magnetycznych.

Litera: A

Przerwa powietrzna to przestrzeń lub innym niemagnetycznym materiałem, która oddziela magnes od innego obiektu. Wzrost odległości powoduje osłabienie pola magnetycznego. Wzór: B = μ0(H - M), gdzie B to indukcja magnetyczna, μ0 to przenikalność próżni, H to natężenie pola, a M to magnetyzacja.
Materiał anizotropowy, np. magnes neodymowy, ma właściwości zależne od kierunku. Magnesy anizotropowe są wydajniejsze od jednorodnych, ale ich magnesowanie odbywa się w precyzyjnie określonej osi.
Wyżarzanie to metoda eliminacji naprężeń wewnętrznych w materiałach magnetycznych. Przeprowadza się je w kontrolowanych warunkach, zwykle w próżni, aby zapobiec degradacji materiału. Wyżarzanie zwiększa właściwości magnetyczne i pozwala dostosować materiał do wymagań aplikacji.
Magnesowanie osiowe oznacza, że bieguny magnetyczne są rozmieszczone wzdłuż osi magnesu, a linie pola magnetycznego przebiegają równolegle do jego osi. Jest to powszechnie stosowane w magnesach pierścieniowych oraz sferycznych. Wzór: Bz = (Br/2) * [(L + 2z) / (L^2 + 4z^2)^0.5 - (L - 2z) / (L^2 + 4z^2)^0.5].

Litera: B

Indukcja magnetyczna B to natężenie pola przechodzącego przez obiekt. Jest mierzona lub gaussach. Wzór: B = μ0(H + M), gdzie μ0 to przenikalność próżni, H to pole magnetyczne, a M to magnetyzacja.
Pętla histerezy to graficzna reprezentacja zależności między indukcją magnetyczną (B) a siłą magnesowania. Pozwala określić takie właściwości jak koercja. Pętla histerezy jest niezbędna przy ocenie materiałów stosowanych w silnikach elektrycznych.
Indukcja remanentna Bd to resztkowe pole magnetyczne, które pozostaje w magnesie po usunięciu pola zewnętrznego. Jest mierzona w jednostkach tesla i reprezentuje zdolność materiału do zachowania magnetyzmu.
Nachylenie linii pracy, oznaczone jako Bd/Hd, to współczynnik opisujący przenikalność magnetyczną materiału. Wzór: Bd/Hd = (Br - Hd) / Hd. Jest to kluczowy parametr przy projektowaniu obwodów magnetycznych.
Bg oznacza średnią wartość indukcji magnetycznej w przerwie powietrznej. Jest to ważny element przy projektowaniu urządzeń takich jak czujniki i aktuatory. Wzór: Bg = Φ / A, gdzie Φ to strumień magnetyczny, a A to powierzchnia przerwy powietrznej.

Litera: C

System jednostek C.G.S. jest stosowany głównie w magnetyzmie do opisu właściwości materiałów. Choć ustępuje systemowi MKSA (SI), C.G.S. wciąż znajduje zastosowanie w historycznych i specjalistycznych analizach. Jednostki w tym systemie obejmują siłę magnetyzującą, indukcję magnetyczną.
Obwód zamknięty odnosi się do konfiguracji, w której bez przerw lub zakłóceń. Wykorzystuje się komponenty magnetyczne, które zapewniają minimalizując straty strumienia. Takie obwody są kluczowe w zastosowaniach wymagających kontrolowanych pól magnetycznych.
Siła koercji, oznaczana jako Hc, to wymagana siła do rozmagnesowania materiału. Parametr ten mierzy odporność materiału na rozmagnesowanie. Wzór: Hc = -M/χ, gdzie M to magnetyzacja, a χ to przenikalność magnetyczna.
Koercja to miara odporności materiału magnetycznego na rozmagnesowanie. Wpływa również na stabilność magnetyczną w zmiennych warunkach.
Koercja wewnętrzna określa zdolność materiału do zachowania magnetyzmu. Mierzy siłę demagnetyzującą potrzebną do zredukowania magnetyzacji wewnętrznej do zera. Materiały o wysokiej koercji zapewniają stabilność magnetyczną.
Temperatura Curie to punkt, w którym przechodzą w stan paramagnetyczny. Po przekroczeniu tej temperatury materiał przestaje wykazywać silne magnetyczne zachowania. Wzór: Tc = (2kB / μ0) * J0^2 / (χ), gdzie kB to stała Boltzmanna, a J0 to moment magnetyczny.

Litera: D

Rozmagnesowanie odnosi się do procesu redukcji lub eliminacji magnetyzacji. Metody obejmują lub techniki rozmagnesowania, takie jak odmagnesowywanie. Proces ten jest kluczowy w zastosowaniach wymagających lub całkowitego usunięcia magnetyzmu.
Krzywa rozmagnesowania przedstawia zależność w cyklach magnetyzacji i rozmagnesowania. Pokazuje właściwości histerezy materiału, takie jak charakterystyka stabilności magnetycznej. Jest to narzędzie używane w projektowaniu magnetycznych układów.
Siła rozmagnesowująca odnosi się do zewnętrznego pola magnetycznego, które wprowadza rozmagnesowanie. Pozwala to na manipulację właściwościami magnetycznymi.
Rozmagnesowany materiał to taki, w którym całkowicie usunięto resztkową magnetyzację. Stan ten osiąga się poprzez lub inne techniki rozmagnesowania, np. ogrzewanie. Rozmagnesowanie jest ważne w eliminacji wpływów magnetycznych.
Gęstość magnesu neodymowego, zazwyczaj równa około 7.5 g/cm³, jest jednym z kluczowych parametrów określających jego właściwości magnetyczne. Gęstość można łatwo obliczyć za pomocą wzoru:
ρ = m / V, gdzie:
ρ - gęstość (w g/cm³ lub kg/m³).
m - masa magnesu (w gramach lub kilogramach).
V - objętość magnesu (w cm³ lub m³).

Przykład: Dla magnesu o masie 150 g i objętości 20 cm³, gęstość wynosi:
ρ = 150 / 20 = 7.5 g/cm³.

Znajomość gęstości magnesu pozwala lepiej przewidywać jego siłę magnetyczną i trwałość.
Materiał diamagnetyczny wykazuje brak trwałego momentu magnetycznego. Pod wpływem pola zewnętrznego generuje pole przeciwne. Zjawisko to wynika z które tworzą przeciwdziałające pole magnetyczne.
Średnica to odległość między najdalszymi punktami na powierzchni magnesu tarczowego, pierścieniowego lub sferycznego. Jest to kluczowy parametr przy precyzyjnym dopasowaniu komponentów.
Magnesy diametralnie namagnesowane mają bieguny umieszczone na przeciwnych stronach średnicy. Są przydatne w zastosowaniach wymagających unikalnych wzorców pola magnetycznego.
Tolerancja wymiarowa określa zakres zmienności wymiarów magnesu. Jest kluczowa przy integracji magnetycznych komponentów w układzie.
Wymiary odnoszą się do takich jak długość, szerokość, wysokość lub średnica magnesu. Precyzja wymiarowa jest ważne w projektowaniu układów.
Kierunek magnesowania określa orientację domen magnetycznych. Jest to cecha kluczowa, która wpływa na interakcje pola z innymi elementami.
Domeny to strefy w materiale magnetycznym, w których tworząc lokalne pola magnetyczne. Mogą być zmieniane przez czynniki fizyczne i mechaniczne.

Litera: E

Prądy wirowe to elektryczne prądy indukowane w materiałach przewodzących podczas działania zmiennego pola magnetycznego. Powodują one straty energii, nagrzewanie lub efekty oporowe. Stosowanie optymalizacji konstrukcji minimalizuje ich negatywne efekty.
Elektromagnes to magnes bazujący na przewodniku elektrycznym, takim jak cewka. Siła pola magnetycznego zależy od natężenia prądu. Elektromagnesy mają zastosowanie w takich jak silniki, generatory czy systemy MRI.
Energia magnetyczna to miara energii przechowywanej w materiale magnetycznym. Obliczana jako produkt dwóch parametrów na krzywej rozmagnesowania. Wyrażana w MGOe (Mega Gauss Oersteds) lub kJ/m^3. Jest kluczowym parametrem przy ocenie ich efektywności w aplikacjach.
Energia magnetyczna to maksymalna energia zgromadzona w magnesie. Magnesy o wyższej energii mają lepszą wydajność.

Litera: F

Ferryty to substancje składające się głównie z tlenku żelaza (Fe2O3). Są cenione za swoje właściwości wysokoczęstotliwościowe. Używane w transformatorach, induktorach czy urządzeniach telekomunikacyjnych.
Materiał ferromagnetyczny charakteryzuje się zdolnością do wzmacniania strumienia magnetycznego. Atomy w takim materiale wytwarzając silne pole magnetyczne. Przykłady to oraz ich stopy. Są one szeroko stosowane dzięki ich trwałym właściwościom magnetycznym.
Gęstość strumienia magnetycznego, oznaczana jako wskazuje ilość strumienia przechodzącego przez jednostkę powierzchni. Mierzona w Teslach (T) lub Gaussach (G). Jest to kluczowy parametr przy projektowaniu układów magnetycznych.
Miernik strumienia magnetycznego służy do pomiaru indukcji magnetycznej (B). Wykorzystuje różne technologie, takie jak do dokładnych pomiarów w punktach przestrzeni. Jest ważnym narzędziem inżynierskim.

Litera: G

Gauss to nazwa pochodzi od niemieckiego fizyka Karla Friedricha Gaussa. Jeden Gauss (G) odpowiada pojęciu indukcji magnetycznej w mniejszych skalach. Jednostka historycznie popularna.
Gaussomierz to przyrząd określający indukcję w punktach przestrzeni. Stosuje sensory efektu Halla. Znajduje zastosowanie w wielu gałęziach inżynierii i nauki.
Gilbert to nazwa pochodzi od Williama Gilberta, pioniera badań magnetycznych. Jeden Gilbert odpowiada natężeniu potrzebnemu do wytworzenia strumienia magnetycznego w określonym obwodzie.
Klasa magnesu odnosi się do właściwości i wydajności w określonych zastosowaniach. Wyższe klasy oferują lepsze pole magnetyczne i stabilność.

Litera: H

Czujnik Halla działa na zasadzie efektu Halla, który polega na indukowaniu napięcia w przewodniku w obecności pola magnetycznego. Urządzenia te odgrywają kluczową rolę w automatyce przemysłowej i precyzyjnych pomiarach.
Siła koercji (Hc) oznacza parametr opisujący odporność materiału na rozmagnesowanie. Wyrażana w jednostkach SI. Wyższe wartości Hc wskazują na większą stabilność magnetyczną materiału.
Hd to natężenie pola magnetycznego potrzebne do osiągnięcia określonej indukcji remanentnej (Bd). Mierzona w oerstedach (Oe) lub kiloamperach na metr (kA/m).
Magnes o wysokim gradiencie pola wytwarza z dużą precyzją kontroluje gradient. Zastosowania obejmują MRI, separację magnetyczną.
Hm oznacza największe natężenie pola magnetycznego, jakie można zastosować przed osiągnięciem nasycenia materiału. Jest istotna przy ocenie stabilności i ograniczeń operacyjnych komponentów magnetycznych.
Pole jednorodne charakteryzuje się stałą wartością i kierunkiem. Jest kluczowe w zastosowaniach wymagających precyzyjnego pola.
Magnes podkowiasty ma zwiększając siłę pola w tej przestrzeni. oraz zastosowaniach wymagających skupionego pola.
Efektywna siła magnesowania (Hs) to pole potrzebne do pełnego namagnesowania materiału do nasycenia. Mierzona w miarach siły magnetycznej.
Wykres histerezy, zwany również permeametrem, przedstawia charakterystykę magnetyczną materiałów. Stosowany w kontroli jakości, analizie strat energetycznych.
Pętla histerezy to graficzne przedstawienie relacji między indukcją magnetyczną (B) a siłą magnesowania (H). Dostarcza informacji o stratach energii, koercji i zdolności magazynowania energii.
Histereza odnosi się do cechy materiałów magnetycznych. Straty histerezowe to energia tracona podczas cykli magnesowania i rozmagnesowania. Ważne przy projektowaniu transformatorów czy silników.

Litera: I

Średnica wewnętrzna (ID) to odległość między wewnętrznymi powierzchniami obiektu. Jest istotnym parametrem w projektowaniu układów magnetycznych.
Indukcja magnetyczna (B) reprezentuje ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię. Wyrażana w standardowych jednostkach SI. Jest kluczowa dla projektowania i analizy układów magnetycznych.
Straty nieodwracalne to skutki działania wysokich temperatur, stresu mechanicznego lub demagnetyzujących pól. Powodują spadek właściwości magnetycznych i wydajności materiału.
Materiał izotropowy nie zależy od orientacji pola magnetycznego. stosowany w zastosowaniach wymagających równomiernego zachowania magnetycznego.

Litera: K

Przytrzymywacz magnetyczny to akcesorium zapobiegające rozmagnesowaniu magnesów. pomaga w utrzymaniu mocy magnesu. Stosowany głównie z historycznymi modelami magnesów.
Kilogauss (kG) to jednostka używana do pomiaru gęstości strumienia magnetycznego. Jeden kilogauss (1 kG) odpowiada 1000 gaussom. Jednostka ta znajduje zastosowanie w badaniach naukowych i testach magnesów.

Litera: L

Linia obciążenia przedstawia punkty pracy materiału magnetycznego na krzywej rozmagnesowania. Pomaga w ocenie zachowania i stabilności materiału magnetycznego.
Magnetyt to naturalnie występujący materiał magnetyczny składający się z tlenku żelaza (Fe3O4). Wykorzystywany historycznie do kompasów.

Litera: M

Magnes to materiał przyciągający lub odpychający inne materiały magnetyczne. Może być naturalny, jak magnetyt, lub sztuczny, np. neodymowy.
Zestaw magnetyczny to system składający się z różnych komponentów magnetycznych. Wykorzystywany w sensorach, separatorach magnetycznych.
Oś magnetyczna to wyimaginowana linia w magnesie, gdzie pole magnetyczne jest najbardziej skoncentrowane lub intensywne. Łączy bieguny magnesu i określa orientację jego pola magnetycznego.
Obwód magnetyczny to analogiczna do obwodu elektrycznego. Składa się z materiałów magnetycznych, szczelin powietrznych i innych komponentów.
Energia magnetyczna to energia zgromadzona w polu magnetycznym. związana z siłą pola magnetycznego i objętością przestrzeni.
Pole magnetyczne (B) to podstawowe zjawisko elektromagnetyczne. tworzone przez magnesy lub prądy elektryczne.
Natężenie pola magnetycznego (H) to miara siły magnesowania stosowanej do materiału magnetycznego. wyrażane w amperach na metr (A/m).
Strumień magnetyczny to ilość linii pola magnetycznego przechodzących przez określony obszar. Wyrażany w weberach (Wb).
Gęstość strumienia magnetycznego, oznaczana jako B, jest parametrem opisującym intensywność pola magnetycznego w danym miejscu. Reprezentuje ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię.

Oblicza się ją za pomocą równania:
B = Φ / A

Gdzie:
B: Magnetic flux density (Tesla, Gauss)
Φ: Magnetic flux (Weber)
A: Surface area (m²)

Jeśli powierzchnia wynosi 0,05 m², a strumień magnetyczny to 0,002 Weber, wynikowa gęstość wynosi 0,04 Tesli.

Gęstość strumienia magnetycznego jest kluczowa w projektowaniu urządzeń takich jak silniki, generatory czy czujniki magnetyczne.
Dostarczane są kluczowe dane, takie jak remanencja i koercja. Materiał z węższą pętlą ma mniejsze straty energii.
Indukcja magnetyczna mierzy ilość strumienia magnetycznego przechodzącego przez jednostkę powierzchni. Wyższe wartości indukcji wskazują na silniejsze pole magnetyczne.
Linia siły magnetycznej, zwana także linią pola magnetycznego, to ścieżka wskazująca, jak poruszałyby się bieguny magnetyczne w danym polu. linie tworzą zamknięte pętle dla większości magnesów.
Ścieżka magnetyczna odnosi się do trasy, którą podąża strumień magnetyczny w obwodzie magnetycznym lub systemie. minimalizuje straty magnetyczne.
Przenikalność magnetyczna określa zdolność materiału do przewodzenia strumienia magnetycznego. Ich zastosowanie zwiększa wydajność systemów opartych na magnesach.
Każdy magnes ma biegun północny i południowy. Zrozumienie interakcji między biegunami jest kluczowe w projektowaniu układów magnetycznych.
Nasycenie magnetyczne określa maksymalne natężenie pola magnetycznego, jakie może osiągnąć materiał. Ma również znaczenie w procesie projektowania obwodów magnetycznych.
Może być realizowane za pomocą pola magnetycznego lub prądu elektrycznego. Kontrola procesu magnesowania umożliwia uzyskanie optymalnych parametrów.
Magnetyzacja odnosi się do rezultatu ustawienia momentów magnetycznych atomów lub cząsteczek w preferowanej orientacji. Można ją osiągnąć poprzez kontakt z polem magnetycznym, przepływ prądu elektrycznego lub inne magnesy.
Krzywa magnetyzacji, zwana także krzywą rozmagnesowania lub krzywą B-H, przedstawia zależność między natężeniem pola magnetycznego (H) a indukcją magnetyczną (B). Dostarczają istotnych informacji o charakterystyce materiału, jego nasyceniu i stabilności magnetycznej.
Namagnesowany oznacza rezultat ustawienia momentów magnetycznych w określonym kierunku. Można go uzyskać poprzez ekspozycję na pole magnetyczne, kontakt z magnesami lub przepływ prądu elektrycznego.
Siła magnetomotoryczna (mmf) to miara różnicy potencjałów magnetycznych. Analogiczna do siły elektromotorycznej (EMF) w obwodach elektrycznych.
Materiał w kontekście magnetyzmu odnosi się do substancji posiadającej właściwości magnetyczne lub podatnej na wpływ pola magnetycznego. Zachowanie magnetyczne materiału zależy od jego struktury atomowej i molekularnej.
Maksymalna gęstość energii magnetycznej, oznaczany jako BHmax, jest miarą maksymalnej energii, jaką może dostarczyć magnes na jednostkę objętości.

Wzór opisujący BHmax przedstawia się następująco:
BHmax = B × H

Gdzie:
B: Gęstość strumienia magnetycznego (Tesla)
H: Natężenie pola magnetycznego (A/m)

Dla magnesu o wartości B = 1,2 T i H = 800 kA/m, BHmax wynosi 960 kJ/m³.

BHmax jest kluczowym parametrem w ocenie wydajności magnesów, zwłaszcza w projektach wymagających maksymalnej efektywności energetycznej.
Maksymalna temperatura pracy (Tmax) to istotny parametr dla zastosowań w środowiskach o wysokiej temperaturze. Zapewnia stabilność i wydajność materiału w określonych warunkach pracy.
Makswell to reprezentuje ilość strumienia magnetycznego przechodzącego przez powierzchnię jednego centymetra kwadratowego w polu magnetycznym o sile jednego gausa. Jednostka ta jest używana w systemie CGS i odpowiada 10^−8 weberów (Wb).
Mega Gauss Oersteds (MGOe) to jednostka używana do wyrażania ilości energii magnetycznej przechowywanej w magnesie na jednostkę objętości. ta jednostka pozwala na ocenę potencjału magnetycznego magnesów w skomplikowanych obwodach magnetycznych.
Monopol magnetyczny odnosi się do hipotetycznego pojedynczego bieguna magnetycznego, który istnieje samodzielnie jako północny lub południowy biegun magnetyczny. W rzeczywistości bieguny magnetyczne zawsze występują w parach, jednak monopole mogą istnieć w pewnych modelach teoretycznych.

Litera: N

Klasa N odnosi się do oznaczenia liczbowego, np. N35, N42 czy N52, które wskazuje maksymalny iloczyn energii magnetycznej (BHmax). Wyższe wartości klasy N odpowiadają silniejszym magnesom o lepszych właściwościach magnetycznych.
Biegun północny to jeden z dwóch podstawowych biegunów magnetycznych magnesu. Biegun północny magnesu przyciąga biegun południowy innego magnesu, generując siłę przyciągania magnetycznego.

Litera: O

Oersted to nazwa pochodzi od Hansa Christiana Oersteda, który odkrył zależność między prądami elektrycznymi a polami magnetycznymi. jednostka używana głównie w systemie CGS.
Obwód otwarty odnosi się do stanu, w którym obwód magnetyczny nie jest zamknięty lub kompletny. obwody otwarte mogą występować z powodu szczelin powietrznych lub niewystarczających materiałów magnetycznych.
Orientacja odnosi się do decyduje o kierunku i rozkładzie pola magnetycznego lub strumienia. może znacząco wpływać na interakcje między magnesami i wydajność obwodów magnetycznych.

Litera: P

Materiały paramagnetyczne to stają się namagnesowane w kierunku pola zewnętrznego dzięki wyrównaniu momentów magnetycznych atomów lub cząsteczek. przykłady to aluminium, mangan i tlen.
Paramagnetyzm to właściwość materiałów, które są słabo przyciągane do pól magnetycznych. przykładami są aluminium, platyna i tlen.
Magnes trwały to materiał lub obiekt, który zachowuje swoje właściwości magnetyczne na stałe. Jest wykonany z materiałów o silnych właściwościach magnetycznych, takich jak żelazo, nikiel czy stopy kobaltu.
Magnesy trwałe generują pole magnetyczne bez potrzeby zewnętrznego zasilania. Ich trwałość i stabilność czynią je niezastąpionymi w wielu zastosowaniach przemysłowych.
Przenikalność magnetyczna to właściwość materiału określająca jego zdolność do przewodzenia strumienia magnetycznego. wartość przenikalności zależy od składu chemicznego i struktury materiału.
Przenikalność magnetyczna, oznaczana symbolem P, określa łatwość, z jaką strumień magnetyczny może przepływać przez określony obwód magnetyczny.

Wzór matematyczny dla permeance wyraża się jako:
P = (μ × A) / l

Gdzie:
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)
l: Długość ścieżki magnetycznej (m)

Przykładowo, materiał o dużym polu przekroju i krótkiej ścieżce magnetycznej wykazuje wysoką przenikalność, co czyni go wydajnym w zastosowaniach magnetycznych.

Permeance jest kluczowym parametrem w projektowaniu obwodów magnetycznych, szczególnie w aplikacjach wymagających minimalnych strat magnetycznych.
wskazuje nachylenie linii pracy na krzywej rozmagnesowania. jest istotny przy projektowaniu efektywnych obwodów magnetycznych.
Zapewnia ochronę przed korozją, utlenianiem i demagnetyzacją, co zwiększa trwałość magnesów. Dzięki powłokom magnesy mogą być używane w trudnych warunkach środowiskowych.
bieguny o tej samej polaryzacji odpychają się, a o przeciwnych przyciągają. odgrywa istotną rolę w projektowaniu urządzeń opartych na magnesach.
bieguny te determinują kierunek siły magnetycznej i interakcje między magnesami. określają sposób zachowania magnesów w polach zewnętrznych.
Siła przyciągania, znana również jako siła trzymania, opisuje zdolność magnesu do utrzymania przyczepności. Można ją oszacować za pomocą wzoru:
F = B² × A / (2 × μ₀), gdzie:
F - siła przyciągania (w niutonach, N).
B - gęstość strumienia magnetycznego na powierzchni magnesu (w teslach, T).
A - powierzchnia styku magnesu z materiałem (w m²).
μ₀ - przenikalność magnetyczna próżni (4π × 10⁻⁷ H/m).

Przykład: Jeśli gęstość strumienia magnetycznego wynosi 1.2 T, a powierzchnia styku magnesu to 0.005 m², siła przyciągania wynosi:
F = (1.2)² × 0.005 / (2 × 4π × 10⁻⁷) ≈ 572 N.

Litera: R

Metale ziem rzadkich to grupa pierwiastków chemicznych, takich jak neodym, które stanowią kluczowy składnik magnesów neodymowych. Dzięki dużej sile magnetycznej są wykorzystywane w przemyśle, elektronice i technologiach konsumenckich.
Wykonane są z pierwiastków ziem rzadkich, takich jak neodym, dysproz czy prazeodym. Ich wysoka wydajność sprawia, że są niezastąpione w wielu zastosowaniach.
Względna przenikalność magnetyczna to miara, jak łatwo materiał może zostać namagnesowany w porównaniu do próżni. Magnesy neodymowe wykazują wysoką względną przenikalność, co umożliwia efektywne projektowanie obwodów magnetycznych.
Opór magnetyczny, oznaczana symbolem R, jest miarą oporu obwodu magnetycznego wobec przepływu strumienia magnetycznego.

Reluctance można obliczyć przy użyciu wzoru:
R = l / (μ × A)

Gdzie:
R: Opór magnetyczny (1/H)
l: Długość ścieżki magnetycznej (m)
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)

Im większy przekrój magnetyczny lub przenikalność, tym mniejszy opór magnetyczny.

Znajomość oporu magnetycznego umożliwia optymalizację działania systemów takich jak elektromagnesy, transformatory czy silniki elektryczne.
Reluktancja to miara oporu, jaki obwód magnetyczny stawia przepływowi strumienia magnetycznego. Projektowanie i geometria magnesu oraz otaczających materiałów wpływają na reluktancję i wydajność obwodów magnetycznych.
Pozostałość magnetyczna wskazuje zdolność magnesu do zachowania swoich właściwości magnetycznych w czasie. Jest to kluczowy parametr w ocenie siły i wydajności magnesu.
Zjawisko to wynika z przeciwnych pól magnetycznych generowanych przez magnesy, które się nawzajem odpychają. Siła odpychania jest proporcjonalna do siły magnetycznej i odległości między magnesami.
Ścieżka powrotna w obwodzie magnetycznym z magnesami neodymowymi odnosi się do drogi, którą strumień magnetyczny przemieszcza się, aby zamknąć obwód magnetyczny. Jest kluczowym elementem w projektowaniu efektywnych obwodów magnetycznych.

Litera: S

Siła ścinania, oznaczana symbolem Fs, odnosi się do siły wymaganej do przemieszczenia magnesu wzdłuż powierzchni styku w kierunku równoległym do płaszczyzny kontaktu.

Siłę ścinania można obliczyć za pomocą wzoru:
Fs = F × tan(θ)

Gdzie:
F: Siła przyciągania (N)
θ: Kąt nachylenia powierzchni styku (rad)

Przykładowo, dla F = 50 N i kąta nachylenia θ = 30°, siła ścinania wynosi około 28,9 N.

Parametr ten odgrywa kluczową rolę w aplikacjach takich jak mocowania magnetyczne lub mechanizmy przesuwne.
Biegun południowy jest jednym z dwóch podstawowych biegunów magnetycznych magnesu. Magnes o biegunie południowym przyciąga biegun północny innego magnesu, co skutkuje siłą przyciągania. Znajomość właściwości bieguna południowego jest niezbędna do zrozumienia zjawisk magnetycznych.
Proces ten polega na konfiguracji magnesów w szeregu lub równolegle, co intensyfikuje pole magnetyczne. Układanie magnesów w stos jest popularne w aplikacjach wymagających dużej siły przyciągania.

Litera: T

Magnesy neodymowe mogą osiągać wysokie wartości gęstości strumienia, mierzone w teslach (T) lub militeslach (mT). Jednostka ta została nazwana na cześć Nikoli Tesli, znanego wynalazcy i fizyka, którego prace zrewolucjonizowały badania nad polem magnetycznym.
Dzięki zdefiniowanemu kierunkowi magnesowania, magnesy anizotropowe osiągają większą efektywność. Z kolei magnesy izotropowe można magnesować w dowolnym kierunku, co zapewnia wszechstronność ich zastosowań. Magnesy anizotropowe znajdują zastosowanie w urządzeniach wymagających precyzji, takich jak silniki elektryczne.

Litera: W

Weber jest jednostką miary strumienia magnetycznego, która reprezentuje całkowitą liczbę linii pola magnetycznego przechodzących przez określoną powierzchnię. Pomaga w analizie skuteczności magnesów w aplikacjach takich jak generatory, silniki czy systemy przechowywania energii.
Waga magnesu neodymowego jest istotnym parametrem wpływającym na jego zastosowania. Można ją prosto określić na podstawie jego gęstości i objętości przy użyciu wzoru:
m = ρ × V, gdzie:
m - masa magnesu (w gramach lub kilogramach).
ρ - gęstość magnesu (zwykle 7.5 g/cm³).
V - objętość magnesu (w cm³ lub m³).

Przykład: Magnes o gęstości 7.5 g/cm³ i objętości 10 cm³, waga wynosi:
m = 7.5 × 10 = 75 g.

Obliczenie wagi pomaga lepiej dobrać magnes do konkretnego zastosowania.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98