magnesy neodymowe

Magnesy neodymowe co to? Praktycznie wszystkie dostępne u nas neodymowe magnesy znajdziesz na poniższym wykazie sprawdź cennik magnesów

magnes dla poszukiwaczy F 550 BlackSiver z mocnym uchem bocznym i liną

Gdzie kupić silny UM magnes do poszukiwań? Magnetyczne uchwyty w szczelnej, solidnej obudowie ze stali idealnie nadają się do użytkowania w trudnych, wymagających warunkach pogodowych, w tym również na śniegu i w deszczu czytaj...

uchwyty magnetyczne

Uchwyty magnetyczne mogą być stosowane do usprawnienia produkcji, poszukiwań podwodnych terenów lub do odnajdywania meteorytów z metalu. Mocowania to śruba 3x [M10] duży udźwig zobacz ofertę...

Ciesz się wysyłką zamówienia tego samego dnia jeżeli zamówienie złożone jest do 14:00 w dni pracujące.

logo Dhit sp. z o.o.

Słownik terminologii magnetycznej

Jak odnaleźć się w świecie magnesów neodymowych?

Serdecznie witamy w naszym szczegółowym słowniku poświęconym fascynujący świat magnesów neodymowych. Jako wiodący ekspert w dostarczaniu najlepszych rozwiązań magnetycznych, wiemy, jak ważne jest posiadanie rzetelnej informacji na temat podstawowych zagadnień z tej wyjątkowej dziedziny. Ten słownik został starannie opracowany, aby stać się kluczowym źródłem informacji dla wszystkich, zainteresowanego magnesami – niezależnie od tego, czy jesteś profesjonalistą branżowym, pasjonatem, czy kimś zainteresowanym wiedzy magnesów.

W naszym słowniku znajdziesz przystępne i dokładne wyjaśnienia kluczowych terminów i tematów związanych z magnesami neodymowymi. Od zasad działania pól magnetycznych i natężenia pola, przez krzywe magnesowania, aż po klasy materiałów i zaawansowane technologie magnetyczne – każda definicja została stworzona z intencją poszerzeniu Twojej wiedzy oraz łatwości zrozumienia nawet skomplikowanych koncepcji. Niezależnie od tego, czy badasz zastosowania magnesów w przemyśle, realizujesz projekty badawcze, czy realizujesz własne projekty DIY, ten słownik pomoże Ci odnaleźć się.

Poznaj fascynujący świat magnesów neodymowych z pewnością siebie. Rozwijaj swoje zrozumienie, zdobywaj nową wiedzę i poznawaj zastosowania tych innowacyjnych materiałów, zgłębiając terminy i koncepcje, które definiują ich funkcjonalność i wszechstronność. Pozwól, by ten słownik Twoim narzędziem w poznawaniu dynamicznego krajobrazu technologii magnetycznych.

Litera: A

Przerwa powietrzna to przestrzeń lub innym niemagnetycznym materiałem, która oddziela magnes od ferromagnetyka. Większa przerwa powoduje osłabienie pola magnetycznego. Wzór: B = μ0(H - M), gdzie B to indukcja magnetyczna, μ0 to przenikalność próżni, H to natężenie pola, a M to magnetyzacja.
Materiał anizotropowy, np. magnes neodymowy, ma właściwości które zmieniają się w zależności od orientacji. Magnesy o preferencyjnym kierunku magnesowania są wydajniejsze od jednorodnych, ale ich magnesowanie odbywa się wyłącznie w jednym kierunku.
Wyżarzanie to proces obróbki cieplnej w materiałach magnetycznych. Przeprowadza się je w wysokiej temperaturze, zwykle w atmosferze ochronnej, aby zapobiec utlenianiu. Wyżarzanie zwiększa właściwości magnetyczne i pozwala uzyskać lepszą wydajność w zastosowaniach.
Magnesowanie osiowe oznacza, że bieguny magnetyczne są rozmieszczone wzdłuż osi magnesu, a linie pola magnetycznego przebiegają wzdłuż długości magnesu. Jest to popularne w magnesach pierścieniowych oraz sferycznych. Wzór: Bz = (Br/2) * [(L + 2z) / (L^2 + 4z^2)^0.5 - (L - 2z) / (L^2 + 4z^2)^0.5].

Litera: B

Indukcja magnetyczna B to ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię. Jest mierzona w teslach. Wzór: B = μ0(H + M), gdzie μ0 to przenikalność próżni, H to pole magnetyczne, a M to magnetyzacja.
Pętla histerezy to graficzna reprezentacja zależności między indukcją magnetyczną (B) a siłą magnesowania. Pozwala określić takie właściwości jak koercja. Pętla histerezy stanowi podstawę przy ocenie materiałów stosowanych w transformatorach.
Indukcja remanentna Bd to resztkowe pole magnetyczne, które pozostaje w magnesie po usunięciu pola zewnętrznego. Jest mierzona w jednostkach tesla i reprezentuje zdolność materiału do zachowania magnetyzmu.
Nachylenie linii pracy, oznaczone jako Bd/Hd, to współczynnik opisujący przenikalność magnetyczną materiału. Wzór: Bd/Hd = (Br - Hd) / Hd. Jest to kluczowy parametr przy projektowaniu obwodów magnetycznych.
Bg oznacza średnią wartość indukcji magnetycznej w przerwie powietrznej. Jest to istotny parametr przy projektowaniu urządzeń takich jak czujniki i aktuatory. Wzór: Bg = Φ / A, gdzie Φ to strumień magnetyczny, a A to powierzchnia przerwy powietrznej.

Litera: C

System jednostek C.G.S. to najstarszy układ miar. Choć ustępuje systemowi MKSA (SI), C.G.S. wciąż znajduje zastosowanie w danych dotyczących magnetyzmu. Jednostki w tym systemie obejmują siłę magnetyzującą, indukcję magnetyczną.
Obwód zamknięty odnosi się do konfiguracji, w której bez przerw lub zakłóceń. Wykorzystuje się komponenty magnetyczne, które zapewniają minimalizując straty strumienia. Takie obwody są kluczowe w zastosowaniach wymagających kontrolowanych pól magnetycznych.
Siła koercji, oznaczana jako Hc, to wymagana siła do rozmagnesowania materiału. Parametr ten mierzy trwałość magnetycznych właściwości. Wzór: Hc = -M/χ, gdzie M to magnetyzacja, a χ to przenikalność magnetyczna.
Wysoka wartość koercji wskazuje na trwałość magnetycznych właściwości materiału. Wpływa również na stabilność magnetyczną w zmiennych warunkach.
Koercja wewnętrzna określa zdolność materiału do zachowania magnetyzmu. Mierzy siłę demagnetyzującą potrzebną do zredukowania magnetyzacji wewnętrznej do zera. Materiały o wysokiej koercji wykazują trwałe właściwości magnetyczne.
Temperatura Curie to punkt, w którym materiały ferromagnetyczne tracą swoje właściwości magnetyczne. Po przekroczeniu tej temperatury struktura magnetyczna ulega dezorganizacji. Wzór: Tc = (2kB / μ0) * J0^2 / (χ), gdzie kB to stała Boltzmanna, a J0 to moment magnetyczny.

Litera: D

Rozmagnesowanie odnosi się do procesu osłabienia resztkowej indukcji w materiale. Metody obejmują stosowanie zmiennych pól magnetycznych, ogrzewanie powyżej temperatury Curie. Proces ten jest kluczowy w zastosowaniach wymagających precyzyjnej kontroli magnetyzacji.
Krzywa rozmagnesowania przedstawia zależność w cyklach magnetyzacji i rozmagnesowania. Pokazuje właściwości histerezy materiału, takie jak koercja i indukcja remanentna. Jest to narzędzie niezbędne do analizy magnetycznych cech materiałów.
Siła rozmagnesowująca odnosi się do zewnętrznego pola magnetycznego, które zmniejsza magnetyzację materiału. Pozwala to na manipulację właściwościami magnetycznymi.
Rozmagnesowany materiał to taki, w którym indukcja remanentna została zredukowana do zera. Stan ten osiąga się poprzez lub inne techniki rozmagnesowania, np. ogrzewanie. Rozmagnesowanie jest ważne w eliminacji wpływów magnetycznych.
Gęstość magnesu neodymowego, wynosząca średnio około 7.5 g/cm³, jest jednym z kluczowych parametrów określających jego właściwości magnetyczne. Gęstość można łatwo obliczyć za pomocą wzoru:
ρ = m / V, gdzie:
ρ - gęstość (w g/cm³ lub kg/m³).
m - masa magnesu (w gramach lub kilogramach).
V - objętość magnesu (w cm³ lub m³).

Przykład: Dla magnesu o masie 150 g i objętości 20 cm³, gęstość wynosi:
ρ = 150 / 20 = 7.5 g/cm³.

Dzięki znajomości gęstości można dokładniej określić parametry pracy magnesu w różnych zastosowaniach.
Materiał diamagnetyczny wykazuje słabe odpychanie od pola magnetycznego. Pod wpływem pola zewnętrznego powodujące odpychanie. Zjawisko to wynika z które tworzą przeciwdziałające pole magnetyczne.
Średnica to odległość między najdalszymi punktami na powierzchni lub innego geometrycznego kształtu. Jest to kluczowy parametr przy projektowaniu układów magnetycznych.
Magnesy diametralnie namagnesowane mają bieguny umieszczone na przeciwnych stronach średnicy. Są często stosowane w zastosowaniach wymagających unikalnych wzorców pola magnetycznego.
Tolerancja wymiarowa określa dopuszczalne odchylenie od specyfikacji wymiarowych. Jest kluczowa przy integracji magnetycznych komponentów w układzie.
Wymiary odnoszą się do mierzalnych właściwości fizycznych magnesu. Precyzja wymiarowa jest kluczowe dla poprawnego działania systemów magnetycznych.
Kierunek magnesowania określa orientację domen magnetycznych. Jest to cecha kluczowa, która wpływa na zachowanie magnetyczne materiału.
Domeny to mikroskopijne obszary, w których momenty magnetyczne są wyrównane w tym samym kierunku. Mogą być zmieniane przez zewnętrzne pola magnetyczne, temperaturę lub naprężenia.

Litera: E

Prądy wirowe to przepływy elektryczności powstałe w materiałach przewodzących podczas zmian w polu magnetycznym. Powodują one problemy z efektywnością. Stosowanie optymalizacji konstrukcji minimalizuje ich wpływ i zwiększa wydajność.
Elektromagnes to magnes wytworzony przez przepływ prądu elektrycznego. Siła pola magnetycznego zależy od natężenia prądu. Elektromagnesy mają zastosowanie w takich jak silniki, generatory czy systemy MRI.
Energia magnetyczna to wskaźnik zdolności magnesu do dostarczania energii. Obliczana jako produkt dwóch parametrów na krzywej rozmagnesowania. Wyrażana w różnych jednostkach. Jest ważnym wskaźnikiem przy ocenie wydajności i siły magnesów.
Energia magnetyczna to maksymalna energia zgromadzona w magnesie. Magnesy o wyższej energii mają lepszą wydajność.

Litera: F

Ferryty to ceramiczne materiały magnetyczne. Łączą niską przewodność elektryczną z wysoką przenikalnością magnetyczną. Używane w zastosowaniach wymagających małych strat prądów wirowych.
Materiał ferromagnetyczny charakteryzuje się silnymi właściwościami magnetycznymi. Atomy w takim materiale układają się równolegle pod wpływem zewnętrznego pola. Przykłady to oraz ich stopy. Stanowią podstawę wielu zastosowań magnetycznych dzięki ich trwałym właściwościom magnetycznym.
Gęstość strumienia magnetycznego, oznaczana jako B, określa siłę pola magnetycznego. Mierzona w Teslach (T) lub Gaussach (G). Jest to kluczowy parametr przy ocenie wydajności magnesów.
Miernik strumienia magnetycznego służy do ilościowego określenia pola magnetycznego. Wykorzystuje różne technologie, takie jak do dokładnych pomiarów w punktach przestrzeni. Jest niezbędny w diagnostyce i projektowaniu.

Litera: G

Gauss to nazwa pochodzi od niemieckiego fizyka Karla Friedricha Gaussa. Jeden Gauss (G) odpowiada 10^-4 Tesli (T). Często używany w zastosowaniach laboratoryjnych.
Gaussomierz to przyrząd określający indukcję w punktach przestrzeni. Stosuje sensory efektu Halla. Pomocny w diagnostyce magnetycznej.
Gilbert to jednostka siły magnetomotorycznej (mmf). Jeden Gilbert odpowiada natężeniu potrzebnemu do wytworzenia strumienia magnetycznego w określonym obwodzie.
Klasa magnesu odnosi się do właściwości i wydajności w określonych zastosowaniach. Wyższe klasy oferują lepsze pole magnetyczne i stabilność.

Litera: H

Efekt ten znajduje zastosowanie w pomiarach pola magnetycznego i detekcji pozycji. Czujniki Halla są szeroko stosowane w elektronice, takich jak systemy ABS w pojazdach.
Siła koercji (Hc) oznacza natężenie pola magnetycznego wymagane do zmniejszenia indukcji szczątkowej (Br) materiału do zera. Wyrażana w oerstedach (Oe) lub kiloamperach na metr (kA/m). Wyższe wartości Hc wskazują na odporność na wpływy zewnętrzne.
Hd to siła potrzebna do namagnesowania materiału i utrzymania tego stanu po wycofaniu pola magnetycznego. Mierzona w różnych jednostkach magnetycznych.
Magnes o wysokim gradiencie pola wytwarza z dużą precyzją kontroluje gradient. Zastosowania obejmują MRI, separację magnetyczną.
Hm oznacza największe natężenie pola magnetycznego, jakie można zastosować przed osiągnięciem nasycenia materiału. Jest istotna przy ocenie stabilności i ograniczeń operacyjnych komponentów magnetycznych.
Pole jednorodne charakteryzuje się brakiem zmian intensywności w danej przestrzeni. Jest kluczowe w zastosowaniach wymagających precyzyjnego pola.
Magnes podkowiasty ma bieguny ustawione blisko siebie. Popularny w edukacji, detekcji metali.
Efektywna siła magnesowania (Hs) to parametr niezbędny w analizie właściwości magnetycznych materiału. Mierzona w oerstedach (Oe) lub kiloamperach na metr (kA/m).
Wykres histerezy, zwany również permeametrem, przedstawia zmiany indukcji magnetycznej (B) w funkcji siły magnesowania (H). Stosowany w kontroli jakości, analizie strat energetycznych.
Pętla histerezy to charakterystyka magnetyczna materiału. Dostarcza informacji o zachowaniu materiału podczas cykli magnesowania.
Histereza odnosi się do zdolności materiału do utrzymania części namagnesowania po usunięciu pola magnetycznego. Straty histerezowe to przemiany energii w ciepło. Minimalizacja strat histerezowych poprawia efektywność układów magnetycznych.

Litera: I

Średnica wewnętrzna (ID) to odległość między wewnętrznymi powierzchniami obiektu. Jest kluczowa dla dopasowania komponentów.
Indukcja magnetyczna (B) opisuje siłę pola magnetycznego w materiale lub przestrzeni. Wyrażana w standardowych jednostkach SI. ważna w charakterystyce materiałów magnetycznych.
Straty nieodwracalne to skutki działania wysokich temperatur, stresu mechanicznego lub demagnetyzujących pól. Powodują spadek właściwości magnetycznych i wydajności materiału.
Materiał izotropowy nie zależy od orientacji pola magnetycznego. Często porównywany z materiałami anizotropowymi, które mają zależne właściwości kierunkowe.

Litera: K

Przytrzymywacz magnetyczny to akcesorium zapobiegające rozmagnesowaniu magnesów. pomaga w utrzymaniu mocy magnesu. Stosowany głównie z magnesami Alnico lub starszymi konstrukcjami.
Kilogauss (kG) to jednostka służąca do wyrażania indukcji magnetycznej. Jeden kilogauss (1 kG) odpowiada 1000 gaussom. Jednostka ta znajduje zastosowanie w badaniach naukowych i testach magnesów.

Litera: L

Linia obciążenia przedstawia graficzny związek między indukcją remanentną (Bd) a siłą rozmagnesowującą (Hd). jest użyteczna w optymalizacji aplikacji magnetycznych.
Magnetyt to pierwszy znany naturalny magnes. posiada unikalne właściwości wynikające z ułożenia domen magnetycznych.

Litera: M

Magnes to obiekt wytwarzający pole magnetyczne, posiadający bieguny magnetyczne. Może być naturalny, jak magnetyt, lub sztuczny, np. neodymowy.
Zestaw magnetyczny to konstrukcja projektowana w celu uzyskania określonych właściwości magnetycznych. systemach unoszenia magnetycznego.
Oś magnetyczna to wyimaginowana linia w magnesie, gdzie pole magnetyczne jest najbardziej skoncentrowane lub intensywne. kluczowa dla analizy zachowania magnesu i jego interakcji z innymi elementami magnetycznymi.
Obwód magnetyczny to analogiczna do obwodu elektrycznego. Składa się z materiałów magnetycznych, szczelin powietrznych i innych komponentów.
Energia magnetyczna to energia zgromadzona w polu magnetycznym. Istotna w aplikacjach takich jak rezonans magnetyczny czy generatory magnetyczne.
Pole magnetyczne (B) to podstawowe zjawisko elektromagnetyczne. Reprezentowane przez linie strumienia magnetycznego.
Natężenie pola magnetycznego (H) to miara siły magnesowania stosowanej do materiału magnetycznego. Zależy od prądu płynącego przez przewodnik.
Strumień magnetyczny to ilość linii pola magnetycznego przechodzących przez określony obszar. Wyrażany w weberach (Wb).
Gęstość strumienia magnetycznego, oznaczana jako B, jest miarą siły lub koncentracji pola magnetycznego. Reprezentuje ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię.

Wyrażona jest wzorem:
B = Φ / A

Gdzie:
B: Magnetic flux density (Tesla, Gauss)
Φ: Magnetic flux (Weber)
A: Surface area (m²)

Jeśli powierzchnia wynosi 0,05 m², a strumień magnetyczny to 0,002 Weber, wynikowa gęstość wynosi 0,04 Tesli.

Gęstość strumienia magnetycznego jest kluczowa w projektowaniu urządzeń takich jak silniki, generatory czy czujniki magnetyczne.
Pętla histerezy ilustruje zachowanie materiału magnetycznego podczas cykli magnesowania i rozmagnesowywania. Materiał z węższą pętlą ma mniejsze straty energii.
jest wyrażana w jednostkach takich jak tesle (T) w układzie SI lub gausy (G) w układzie CGS. Gęstość strumienia magnetycznego jest kluczowym parametrem w projektowaniu układów magnetycznych.
Linia siły magnetycznej, zwana także linią pola magnetycznego, to ścieżka wskazująca, jak poruszałyby się bieguny magnetyczne w danym polu. linie tworzą zamknięte pętle dla większości magnesów.
Ścieżka magnetyczna odnosi się do konfiguracji obejmującej materiały magnetyczne, szczeliny powietrzne i inne elementy. Odpowiednio zaprojektowana ścieżka zapewnia efektywną transmisję energii magnetycznej.
Przenikalność magnetyczna określa zdolność materiału do przewodzenia strumienia magnetycznego. Ich zastosowanie zwiększa wydajność systemów opartych na magnesach.
Bieguny magnetyczne to regiony, gdzie pole magnetyczne jest najsilniejsze. Polaryzacja biegunów determinuje siły przyciągania i odpychania między magnesami.
Po osiągnięciu nasycenia dalszy wzrost pola zewnętrznego nie zwiększa magnetyzacji. Ten parametr jest kluczowy przy wyborze materiałów do zastosowań w wysokich polach magnetycznych.
Może być realizowane za pomocą pola magnetycznego lub prądu elektrycznego. Kontrola procesu magnesowania umożliwia uzyskanie optymalnych parametrów.
Magnetyzacja odnosi się do rezultatu ustawienia momentów magnetycznych atomów lub cząsteczek w preferowanej orientacji. Można ją osiągnąć poprzez kontakt z polem magnetycznym, przepływ prądu elektrycznego lub inne magnesy.
Krzywa magnetyzacji, zwana także krzywą rozmagnesowania lub krzywą B-H, przedstawia zależność między natężeniem pola magnetycznego (H) a indukcją magnetyczną (B). pomocne w wyborze materiałów do konkretnych zastosowań.
Namagnesowany oznacza stan materiału, w którym posiada on pole magnetyczne lub został namagnesowany. Można go uzyskać poprzez ekspozycję na pole magnetyczne, kontakt z magnesami lub przepływ prądu elektrycznego.
Siła magnetomotoryczna (mmf) to miara zdolności do generowania pola magnetycznego w obwodzie magnetycznym. Wyrażana w amperozwojach (At) lub gilbertach (Gb).
Materiał w kontekście magnetyzmu odnosi się do klasyfikowanej jako ferromagnetyczna, paramagnetyczna lub diamagnetyczna. Zachowanie magnetyczne materiału zależy od jego struktury atomowej i molekularnej.
Maximum energy product, oznaczany jako BHmax, reprezentuje maksymalną zdolność magnesu do gromadzenia i uwalniania energii magnetycznej.

Oblicza się go za pomocą równania:
BHmax = B × H

Gdzie:
B: Gęstość strumienia magnetycznego (Tesla)
H: Natężenie pola magnetycznego (A/m)

Przykładowo, magnes z B = 1 T i H = 600 kA/m osiąga BHmax równy 600 kJ/m³.

BHmax jest kluczowym parametrem w ocenie wydajności magnesów, zwłaszcza w projektach wymagających maksymalnej efektywności energetycznej.
Maksymalna temperatura pracy (Tmax) to najwyższa temperatura, przy której materiał magnetyczny może działać bez znaczącej degradacji lub utraty właściwości magnetycznych. temperatura powyżej Tmax może prowadzić do rozmagnesowania materiału.
Makswell to jednostka strumienia magnetycznego nazwana na cześć Jamesa Clerka Maxwella. Jednostka ta jest używana w systemie CGS i odpowiada 10^−8 weberów (Wb).
Mega Gauss Oersteds (MGOe) to jednostka używana do wyrażania maksymalnego iloczynu energii magnetycznej (BHmax) magnesów trwałych. 1 MGOe odpowiada milionowi gauss-oerstedów, co czyni ją wygodną jednostką do porównywania wydajności i siły magnetycznej magnesów w zastosowaniach przemysłowych.
Monopol magnetyczny odnosi się do hipotetycznego pojedynczego bieguna magnetycznego, który istnieje samodzielnie jako północny lub południowy biegun magnetyczny. do tej pory monopole nie zostały zaobserwowane w naturze.

Litera: N

Klasa N odnosi się do klasyfikacji magnesów neodymowych w oparciu o ich właściwości magnetyczne i wydajność. klasy te pomagają użytkownikom w wyborze odpowiednich magnesów do specyficznych zastosowań.
Biegun północny to jeden z dwóch podstawowych biegunów magnetycznych magnesu. Biegun północny magnesu przyciąga biegun południowy innego magnesu, generując siłę przyciągania magnetycznego.

Litera: O

Oersted to nazwa pochodzi od Hansa Christiana Oersteda, który odkrył zależność między prądami elektrycznymi a polami magnetycznymi. 1 oersted to pole, które wywiera siłę jednej dyny na jednostkowy biegun magnetyczny w odległości jednego centymetra.
Obwód otwarty odnosi się do stanu, w którym obwód magnetyczny nie jest zamknięty lub kompletny. W takim stanie linie pola magnetycznego nie mogą tworzyć zamkniętej pętli, co skutkuje osłabieniem pola magnetycznego.
Orientacja odnosi się do ustawienia lub wyrównania magnesu, materiału magnetycznego lub elementu magnetycznego względem osi odniesienia. może znacząco wpływać na interakcje między magnesami i wydajność obwodów magnetycznych.

Litera: P

Materiały paramagnetyczne to stają się namagnesowane w kierunku pola zewnętrznego dzięki wyrównaniu momentów magnetycznych atomów lub cząsteczek. Magnetyzm tych materiałów zanika po usunięciu pola zewnętrznego, co odróżnia je od materiałów ferromagnetycznych.
Paramagnetyzm to właściwość materiałów, które są słabo przyciągane do pól magnetycznych. Materiał traci magnetyzm po usunięciu pola zewnętrznego, co wynika z obecności niesparowanych elektronów.
Magnes trwały to generuje trwałe pole magnetyczne bez potrzeby zewnętrznego pola magnetycznego. znajduje zastosowanie w silnikach elektrycznych, generatorach, urządzeniach pamięci magnetycznej i głośnikach.
Są wykonane z materiałów o wysokiej retencji magnetycznej. Znajdują zastosowanie w urządzeniach wymagających stałego pola magnetycznego, takich jak głośniki, silniki i generatory.
cecha pozwalająca materiałowi wspierać tworzenie pola magnetycznego. wartość przenikalności zależy od składu chemicznego i struktury materiału.
Permeance, oznaczana symbolem P, jest miarą zdolności materiału do przewodzenia strumienia magnetycznego.

Wzór matematyczny dla permeance wyraża się jako:
P = (μ × A) / l

Gdzie:
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)
l: Długość ścieżki magnetycznej (m)

Dla materiału o μ = 4π × 10⁻⁷ H/m, A = 0,01 m² i l = 0,1 m, permeance wynosi 1,26 × 10⁻⁵ H.

Wysoka przenikalność jest istotna dla zwiększenia efektywności działania systemów magnetycznych.
Współczynnik przenikalności to stosunek remanencji (Br) do siły rozmagnesowania (Hd) w materiale magnetycznym. jest istotny przy projektowaniu efektywnych obwodów magnetycznych.
Powłoka lub platerowanie to proces nakładania warstwy ochronnej na powierzchnię magnesów neodymowych. Najczęściej stosowane materiały powłokowe to nikiel, miedź, epoksyd, cynk, złoto czy cyna.
Polaryzacja opisuje orientację pola magnetycznego w magnesie neodymowym, który ma dwa bieguny: północny i południowy. Zrozumienie polaryzacji magnesów jest kluczowe dla ich prawidłowego zastosowania i wyrównania w różnych systemach magnetycznych.
Biegun magnetyczny odnosi się do jednego z dwóch końców magnesu, gdzie pole magnetyczne jest najsilniejsze: północnego lub południowego. Ich położenie i właściwości są kluczowe dla optymalizacji wydajności w zastosowaniach magnetycznych.
Siła przyciągania, znana również jako siła trzymania, opisuje zdolność magnesu do utrzymania przyczepności. Można ją oszacować za pomocą wzoru:
F = B² × A / (2 × μ₀), gdzie:
F - siła przyciągania (w niutonach, N).
B - gęstość strumienia magnetycznego na powierzchni magnesu (w teslach, T).
A - powierzchnia styku magnesu z materiałem (w m²).
μ₀ - przenikalność magnetyczna próżni (4π × 10⁻⁷ H/m).

Przykład: W przypadku, gdy gęstość strumienia magnetycznego to 1.2 T, a powierzchnia styku magnesu to 0.005 m², siła przyciągania wynosi:
F = (1.2)² × 0.005 / (2 × 4π × 10⁻⁷) ≈ 572 N.

Litera: R

Metale ziem rzadkich to grupa pierwiastków chemicznych, takich jak neodym, które stanowią kluczowy składnik magnesów neodymowych. stanowią podstawę innowacyjnych rozwiązań technologicznych.
Magnesy ziem rzadkich, takie jak neodymowe, charakteryzują się wyjątkową siłą magnetyczną. Ich wysoka wydajność sprawia, że są niezastąpione w wielu zastosowaniach.
Względna przenikalność magnetyczna to miara, jak łatwo materiał może zostać namagnesowany w porównaniu do próżni. Magnesy neodymowe wykazują wysoką względną przenikalność, co umożliwia efektywne projektowanie obwodów magnetycznych.
Opór magnetyczny, oznaczana symbolem R, jest miarą oporu obwodu magnetycznego wobec przepływu strumienia magnetycznego.

Reluctance można obliczyć przy użyciu wzoru:
R = l / (μ × A)

Gdzie:
R: Opór magnetyczny (1/H)
l: Długość ścieżki magnetycznej (m)
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)

Im większy przekrój magnetyczny lub przenikalność, tym mniejszy opór magnetyczny.

Reluctance jest analogiczna do oporu elektrycznego w obwodach prądu stałego, co czyni ją kluczowym parametrem w projektowaniu obwodów magnetycznych.
magnetyczny odpowiednik oporu elektrycznego w obwodach prądowych. Projektowanie i geometria magnesu oraz otaczających materiałów wpływają na reluktancję i wydajność obwodów magnetycznych.
Pozostałość magnetyczna wskazuje zdolność magnesu do zachowania swoich właściwości magnetycznych w czasie. Jest to kluczowy parametr w ocenie siły i wydajności magnesu.
Zjawisko to wynika z przeciwnych pól magnetycznych generowanych przez magnesy, które się nawzajem odpychają. Jest istotna w projektowaniu systemów, w których konieczne jest uniknięcie kontaktu między magnesami.
Obejmuje wykorzystanie materiałów ferromagnetycznych lub przewodników magnetycznych do prowadzenia pola magnetycznego. Dzięki odpowiedniemu projektowi ścieżki powrotnej można zmaksymalizować wydajność systemu i zminimalizować straty magnetyczne.

Litera: S

Shear force, oznaczana symbolem Fs, odnosi się do siły wymaganej do przesunięcia magnesu wzdłuż powierzchni styku w kierunku równoległym do płaszczyzny kontaktu.

Siłę ścinania można obliczyć za pomocą wzoru:
Fs = F × tan(θ)

Gdzie:
F: Siła przyciągania (N)
θ: Kąt nachylenia powierzchni styku (rad)

Przykładowo, dla F = 50 N i kąta nachylenia θ = 30°, siła ścinania wynosi około 28,9 N.

Siła ścinania jest istotnym czynnikiem w projektowaniu systemów magnetycznych, szczególnie tam, gdzie wymagana jest wysoka stabilność mechaniczna.
To biegun, który wskazuje w stronę geograficznego bieguna południowego Ziemi, gdy jest swobodnie zawieszony. Magnes o biegunie południowym przyciąga biegun północny innego magnesu, co skutkuje siłą przyciągania. Znajomość właściwości bieguna południowego jest niezbędna do zrozumienia zjawisk magnetycznych.
Proces ten polega na konfiguracji magnesów w szeregu lub równolegle, co intensyfikuje pole magnetyczne. Układanie magnesów w stos jest popularne w aplikacjach wymagających dużej siły przyciągania.

Litera: T

Tesla to jednostka miary gęstości strumienia magnetycznego, która określa siłę i intensywność pola magnetycznego. Tesla znajduje szerokie zastosowanie w ocenie wydajności magnesów oraz projektowaniu precyzyjnych systemów magnetycznych.
Magnesy anizotropowe mają określony kierunek magnesowania, co zapewnia wyższą wydajność w porównaniu z magnesami izotropowymi. Z kolei magnesy izotropowe można magnesować w dowolnym kierunku, co zapewnia wszechstronność ich zastosowań. Magnesy izotropowe są idealne do ogólnych zastosowań dzięki swojej uniwersalności.

Litera: W

Jednostka ta została nazwana na cześć Wilhelma Eduarda Webera, niemieckiego fizyka i pioniera teorii elektromagnetyzmu. Pomaga w analizie skuteczności magnesów w aplikacjach takich jak generatory, silniki czy systemy przechowywania energii.
Waga magnesu neodymowego jest Kluczowym czynnikiem wpływającym na jego zastosowania. Można ją łatwo obliczyć na podstawie jego gęstości i objętości przy użyciu wzoru:
m = ρ × V, gdzie:
m - masa magnesu (w gramach lub kilogramach).
ρ - gęstość magnesu (zwykle 7.5 g/cm³).
V - objętość magnesu (w cm³ lub m³).

Przykład: Magnes o gęstości 7.5 g/cm³ i objętości 10 cm³, waga wynosi:
m = 7.5 × 10 = 75 g.

Znajomość wagi jest kluczowa w projektach, gdzie ważna jest równowaga masy i siły magnetycznej.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98