magnesy neodymowe

Neodymowe magnesy co to? Poszukujesz silnych magnesów neodymowych o średnicy 10 mm? Pełny wykaz dostępnych towarów znajduje się na poniższym spisie sprawdź cennik magnesów

magnes do poszukiwań w wodzie F 550 BlackSiver z mocnym uchem bocznym i liną

Gdzie kupić bardzo mocny UM magnes do poszukiwań? Uchwyty z magnesami w solidnej i szczelnej stalowej obudowie nadają się doskonale do użytkowania w zmiennych i niedogodnych warunkach klimatycznych, w tym w czasie opadów śniegu i deszczu czytaj...

magnesy z uchwytem

Magnetyczne uchwyty mogą być używane do usprawniania procesów produkcyjnych, poszukiwań podwodnych terenów lub do znajdowania skał kosmicznych ze złota. Mocowania to śruba 3x [M10] duży udźwig poznaj ofertę...

Obiecujemy wysyłkę zamówienia magnesów w dzień zlecenia jeżeli zamówienie przyjęte jest przed 14:00 w dni pracujące.

logo Dhit sp. z o.o.

Słownik terminologii magnetycznej

Jak odnaleźć się w świecie magnesów neodymowych?

Cześć w naszym kompleksowym słowniku poświęconym fascynujący świat magnesów neodymowych. Jako wiodący ekspert w dostarczaniu wysokiej jakości rozwiązań magnetycznych, wiemy, jak kluczowe jest posiadanie gruntownej znajomości na temat podstawowych zagadnień z tej specjalistycznej dziedziny. Ten słownik został starannie opracowany, aby stać się kluczowym źródłem informacji dla każdego, ciekawym magnesami – czy jesteś doświadczonym specjalistą branżowym, pasjonatem, czy entuzjastą nauki magnesów.

W naszym słowniku znajdziesz jasne i szczegółowe wyjaśnienia kluczowych terminów i konceptów związanych z magnesami neodymowymi. Od podstaw funkcjonowania pól magnetycznych i natężenia pola, przez krzywe magnesowania, aż po gatunki magnesów i zaawansowane technologie magnetyczne – każda definicja została przygotowana dla poszerzeniu Twojej wiedzy oraz łatwości zrozumienia nawet skomplikowanych koncepcji. Bez względu na, czy zgłębiasz zastosowania magnesów w przemyśle, realizujesz projekty badawcze, czy realizujesz własne projekty DIY, ten słownik pomoże Ci odnaleźć się.

Odkrywaj niezwykły świat magnesów neodymowych bez obaw. Dowiaduj się więcej, poznawaj ciekawostki i wykorzystuj potencjał tych wyjątkowych materiałów, zgłębiając terminy i zagadnienia, które definiują ich funkcjonalność i wszechstronność. Pozwól, by ten słownik Twoim przewodnikiem w odkrywaniu dynamicznego krajobrazu technologii magnetycznych.

Litera: A

Przerwa między magnesem a ferromagnetykiem to przestrzeń lub innym niemagnetycznym materiałem, która oddziela magnes od ferromagnetyka. Wzrost odległości powoduje osłabienie pola magnetycznego. Wzór: B = μ0(H - M), gdzie B to indukcja magnetyczna, μ0 to przenikalność próżni, H to natężenie pola, a M to magnetyzacja.
Materiał anizotropowy, takie jak neodymowe magnesy, ma właściwości które zmieniają się w zależności od orientacji. Magnesy o preferencyjnym kierunku magnesowania są wydajniejsze od jednorodnych, ale ich magnesowanie odbywa się w precyzyjnie określonej osi.
Wyżarzanie to proces obróbki cieplnej w materiałach magnetycznych. Przeprowadza się je w kontrolowanych warunkach, zwykle w próżni, aby zapobiec degradacji materiału. Wyżarzanie zwiększa właściwości magnetyczne i pozwala dostosować materiał do wymagań aplikacji.
Magnesowanie osiowe oznacza, że bieguny magnetyczne znajdują się na przeciwnych końcach magnesu, a linie pola magnetycznego przebiegają wzdłuż długości magnesu. Jest to popularne w magnesach pierścieniowych oraz sferycznych. Wzór: Bz = (Br/2) * [(L + 2z) / (L^2 + 4z^2)^0.5 - (L - 2z) / (L^2 + 4z^2)^0.5].

Litera: B

Indukcja magnetyczna B to ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię. Jest mierzona w teslach. Wzór: B = μ0(H + M), gdzie μ0 to przenikalność próżni, H to pole magnetyczne, a M to magnetyzacja.
Pętla histerezy to graficzna reprezentacja zależności między indukcją magnetyczną (B) a siłą magnesowania. Pozwala określić takie właściwości jak koercja. Pętla histerezy stanowi podstawę przy ocenie materiałów stosowanych w silnikach elektrycznych.
Indukcja remanentna Bd to resztkowe pole magnetyczne, które pozostaje w magnesie po usunięciu pola zewnętrznego. Jest mierzona w jednostkach tesla i reprezentuje zdolność materiału do zachowania magnetyzmu.
Nachylenie linii pracy, oznaczone jako Bd/Hd, to współczynnik opisujący przenikalność magnetyczną materiału. Wzór: Bd/Hd = (Br - Hd) / Hd. Jest to kluczowy parametr przy projektowaniu układów elektromagnetycznych.
Bg oznacza poziom pola magnetycznego w przerwie powietrznej. Jest to ważny element przy projektowaniu urządzeń opartych na obwodach magnetycznych. Wzór: Bg = Φ / A, gdzie Φ to strumień magnetyczny, a A to powierzchnia przerwy powietrznej.

Litera: C

System jednostek C.G.S. jest stosowany głównie w magnetyzmie do opisu właściwości materiałów. Pomimo że został zastąpiony, C.G.S. wciąż znajduje zastosowanie w historycznych i specjalistycznych analizach. Jednostki w tym systemie obejmują siłę magnetyzującą, indukcję magnetyczną.
Obwód zamknięty odnosi się do konfiguracji, w której strumień magnetyczny tworzy pełną pętlę. Wykorzystuje się komponenty magnetyczne, które zapewniają minimalizując straty strumienia. Takie obwody są kluczowe w zastosowaniach wymagających kontrolowanych pól magnetycznych.
Siła koercji, oznaczana jako Hc, to wymagana siła do redukcji indukcji magnetycznej do zera. Parametr ten mierzy trwałość magnetycznych właściwości. Wzór: Hc = -M/χ, gdzie M to magnetyzacja, a χ to przenikalność magnetyczna.
Koercja to miara odporności materiału magnetycznego na rozmagnesowanie. Parametr ten jest istotny przy projektowaniu trwałych magnesów stosowanych w silnikach i generatorach.
Koercja wewnętrzna określa odporność materiału na demagnetyzację. Mierzy siłę demagnetyzującą na indukcji wewnętrznej (Bi). Materiały o wysokiej koercji zapewniają stabilność magnetyczną.
Temperatura Curie to punkt, w którym materiały ferromagnetyczne tracą swoje właściwości magnetyczne. Po przekroczeniu tej temperatury struktura magnetyczna ulega dezorganizacji. Wzór: Tc = (2kB / μ0) * J0^2 / (χ), gdzie kB to stała Boltzmanna, a J0 to moment magnetyczny.

Litera: D

Rozmagnesowanie odnosi się do procesu redukcji lub eliminacji magnetyzacji. Metody obejmują lub techniki rozmagnesowania, takie jak odmagnesowywanie. Proces ten jest kluczowy w zastosowaniach wymagających lub całkowitego usunięcia magnetyzmu.
Krzywa rozmagnesowania przedstawia zależność w cyklach magnetyzacji i rozmagnesowania. Pokazuje właściwości histerezy materiału, takie jak charakterystyka stabilności magnetycznej. Jest to narzędzie używane w projektowaniu magnetycznych układów.
Siła rozmagnesowująca odnosi się do zewnętrznego pola magnetycznego, które zmniejsza magnetyzację materiału. Pozwala to na manipulację właściwościami magnetycznymi.
Rozmagnesowany materiał to taki, w którym całkowicie usunięto resztkową magnetyzację. Stan ten osiąga się poprzez lub inne techniki rozmagnesowania, np. ogrzewanie. Rozmagnesowanie jest ważne w zastosowaniach wymagających neutralnych właściwości magnetycznych.
Gęstość magnesu neodymowego, wynosząca średnio około 7.5 g/cm³, jest jednym z kluczowych parametrów określających jego właściwości magnetyczne. Gęstość można łatwo obliczyć za pomocą wzoru:
ρ = m / V, gdzie:
ρ - gęstość (w g/cm³ lub kg/m³).
m - masa magnesu (w gramach lub kilogramach).
V - objętość magnesu (w cm³ lub m³).

Przykład: Dla magnesu o masie 150 g i objętości 20 cm³, gęstość wynosi:
ρ = 150 / 20 = 7.5 g/cm³.

Dzięki znajomości gęstości można dokładniej określić parametry pracy magnesu w różnych zastosowaniach.
Materiał diamagnetyczny wykazuje brak trwałego momentu magnetycznego. Pod wpływem pola zewnętrznego powodujące odpychanie. Zjawisko to wynika z które tworzą przeciwdziałające pole magnetyczne.
Średnica to w linii prostej na powierzchni lub innego geometrycznego kształtu. Jest to kluczowy parametr przy projektowaniu układów magnetycznych.
Magnesy diametralnie namagnesowane mają bieguny umieszczone na przeciwnych stronach średnicy. Są przydatne w zastosowaniach wymagających interakcji radialnych lub obrotowych.
Tolerancja wymiarowa określa dopuszczalne odchylenie od specyfikacji wymiarowych. Jest kluczowa przy integracji magnetycznych komponentów w układzie.
Wymiary odnoszą się do takich jak długość, szerokość, wysokość lub średnica magnesu. Dokładne określenie wymiarów jest ważne w projektowaniu układów.
Kierunek magnesowania określa orientację domen magnetycznych. Jest to cecha kluczowa, która wpływa na zachowanie magnetyczne materiału.
Domeny to strefy w materiale magnetycznym, w których tworząc lokalne pola magnetyczne. Mogą być zmieniane przez zewnętrzne pola magnetyczne, temperaturę lub naprężenia.

Litera: E

Prądy wirowe to elektryczne prądy indukowane w materiałach przewodzących podczas zmian w polu magnetycznym. Powodują one problemy z efektywnością. Stosowanie optymalizacji konstrukcji minimalizuje ich negatywne efekty.
Elektromagnes to magnes bazujący na przewodniku elektrycznym, takim jak cewka. Zarządzanie prądem pozwala kontrolować pole magnetyczne. Elektromagnesy mają zastosowanie w takich jak silniki, generatory czy systemy MRI.
Energia magnetyczna to wskaźnik zdolności magnesu do dostarczania energii. Obliczana jako produkt dwóch parametrów na krzywej rozmagnesowania. Wyrażana w MGOe (Mega Gauss Oersteds) lub kJ/m^3. Jest ważnym wskaźnikiem przy ocenie ich efektywności w aplikacjach.
Energia magnetyczna to maksymalna energia zgromadzona w magnesie. Magnesy o wyższej energii mają lepszą wydajność.

Litera: F

Ferryty to substancje składające się głównie z tlenku żelaza (Fe2O3). Są cenione za swoje właściwości wysokoczęstotliwościowe. Używane w transformatorach, induktorach czy urządzeniach telekomunikacyjnych.
Materiał ferromagnetyczny charakteryzuje się zdolnością do wzmacniania strumienia magnetycznego. Atomy w takim materiale układają się równolegle pod wpływem zewnętrznego pola. Przykłady to oraz ich stopy. Stanowią podstawę wielu zastosowań magnetycznych dzięki zdolności do utrzymania namagnesowania.
Gęstość strumienia magnetycznego, oznaczana jako wskazuje ilość strumienia przechodzącego przez jednostkę powierzchni. Mierzona w Teslach (T) lub Gaussach (G). Jest to kluczowy parametr przy ocenie wydajności magnesów.
Miernik strumienia magnetycznego służy do pomiaru indukcji magnetycznej (B). Wykorzystuje różne technologie, takie jak do dokładnych pomiarów w punktach przestrzeni. Jest niezbędny w diagnostyce i projektowaniu.

Litera: G

Gauss to jednostka miary indukcji magnetycznej. Jeden Gauss (G) odpowiada pojęciu indukcji magnetycznej w mniejszych skalach. Często używany w zastosowaniach laboratoryjnych.
Gaussomierz to urządzenie do pomiaru siły pola magnetycznego. lub inne techniki do odczytu wartości w Gaussach (G) lub Teslach (T). Pomocny w diagnostyce magnetycznej.
Gilbert to jednostka siły magnetomotorycznej (mmf). Jeden Gilbert odpowiada dawnej miarze zastępowanej w SI jednostką amperozwojów (At).
Klasa magnesu odnosi się do jego właściwości magnetycznych, takich jak BHmax czy Hc. Wyższe klasy oferują większą odporność na temperatury i siły demagnetyzujące.

Litera: H

Czujnik Halla działa na zasadzie efektu Halla, który polega na indukowaniu napięcia w przewodniku w obecności pola magnetycznego. Czujniki Halla są szeroko stosowane w elektronice, takich jak systemy ABS w pojazdach.
Siła koercji (Hc) oznacza parametr opisujący odporność materiału na rozmagnesowanie. Wyrażana w jednostkach SI. Wyższe wartości Hc wskazują na odporność na wpływy zewnętrzne.
Hd to siła potrzebna do namagnesowania materiału i utrzymania tego stanu po wycofaniu pola magnetycznego. Mierzona w oerstedach (Oe) lub kiloamperach na metr (kA/m).
Magnes o wysokim gradiencie pola wytwarza z dużą precyzją kontroluje gradient. Zastosowania obejmują czy badania naukowe wymagające zaawansowanych parametrów pola.
Hm oznacza największe natężenie pola magnetycznego, jakie można zastosować przed osiągnięciem nasycenia materiału. Jest istotna przy projektowaniu systemów wymagających dużych pól magnetycznych.
Pole jednorodne charakteryzuje się brakiem zmian intensywności w danej przestrzeni. Jest kluczowe w zastosowaniach wymagających precyzyjnego pola.
Magnes podkowiasty ma bieguny ustawione blisko siebie. Popularny w edukacji, detekcji metali.
Efektywna siła magnesowania (Hs) to pole potrzebne do pełnego namagnesowania materiału do nasycenia. Mierzona w miarach siły magnetycznej.
Wykres histerezy, zwany również permeametrem, przedstawia zmiany indukcji magnetycznej (B) w funkcji siły magnesowania (H). Stosowany w kontroli jakości, analizie strat energetycznych.
Pętla histerezy to charakterystyka magnetyczna materiału. Dostarcza informacji o stratach energii, koercji i zdolności magazynowania energii.
Histereza odnosi się do cechy materiałów magnetycznych. Straty histerezowe to przemiany energii w ciepło. Ważne przy projektowaniu transformatorów czy silników.

Litera: I

Średnica wewnętrzna (ID) to wymiar wewnętrzny obiektu pustego w środku, np. magnesu, rury czy pierścienia. Jest kluczowa dla dopasowania komponentów.
Indukcja magnetyczna (B) opisuje siłę pola magnetycznego w materiale lub przestrzeni. Wyrażana w standardowych jednostkach SI. Jest kluczowa dla projektowania i analizy układów magnetycznych.
Straty nieodwracalne to trwałe zmniejszenie magnetyzacji materiału. Powodują utrudnienia w długoterminowym użytkowaniu magnesów.
Materiał izotropowy nie zależy od orientacji pola magnetycznego. stosowany w zastosowaniach wymagających równomiernego zachowania magnetycznego.

Litera: K

Przytrzymywacz magnetyczny to element wykonany z miękkiego żelaza lub materiału ferromagnetycznego, umieszczany na lub pomiędzy biegunami magnesu stałego. Zapewnia niską oporność magnetyczną dla strumienia. Stosowany głównie z magnesami Alnico lub starszymi konstrukcjami.
Kilogauss (kG) to jednostka służąca do wyrażania indukcji magnetycznej. Jeden kilogauss (1 kG) odpowiada wartości 1000 G. Jednostka ta znajduje zastosowanie w badaniach naukowych i testach magnesów.

Litera: L

Linia obciążenia przedstawia graficzny związek między indukcją remanentną (Bd) a siłą rozmagnesowującą (Hd). jest użyteczna w optymalizacji aplikacji magnetycznych.
Magnetyt to naturalnie występujący materiał magnetyczny składający się z tlenku żelaza (Fe3O4). Wykorzystywany historycznie do kompasów.

Litera: M

Magnes to obiekt wytwarzający pole magnetyczne, posiadający bieguny magnetyczne. Może być naturalny, jak magnetyt, lub sztuczny, np. neodymowy.
Zestaw magnetyczny to system składający się z różnych komponentów magnetycznych. systemach unoszenia magnetycznego.
Oś magnetyczna to wyimaginowana linia w magnesie, gdzie pole magnetyczne jest najbardziej skoncentrowane lub intensywne. kluczowa dla analizy zachowania magnesu i jego interakcji z innymi elementami magnetycznymi.
Obwód magnetyczny to analogiczna do obwodu elektrycznego. jest kluczowy w projektowaniu urządzeń magnetycznych.
Energia magnetyczna to energia zgromadzona w polu magnetycznym. związana z siłą pola magnetycznego i objętością przestrzeni.
Pole magnetyczne (B) to obszar, w którym materiały magnetyczne lub ładunki elektryczne podlegają sile magnetycznej. tworzone przez magnesy lub prądy elektryczne.
Natężenie pola magnetycznego (H) to intensywność pola magnetycznego w obwodzie. Zależy od prądu płynącego przez przewodnik.
Strumień magnetyczny to ilość linii pola magnetycznego przechodzących przez określony obszar. Wyrażany w weberach (Wb).
Gęstość strumienia magnetycznego, oznaczana jako B, jest miarą siły lub koncentracji pola magnetycznego. Reprezentuje liczbę linii pola magnetycznego przecinających powierzchnię.

Oblicza się ją za pomocą równania:
B = Φ / A

Gdzie:
B: Magnetic flux density (Tesla, Gauss)
Φ: Magnetic flux (Weber)
A: Surface area (m²)

Jeśli powierzchnia wynosi 0,05 m², a strumień magnetyczny to 0,002 Weber, wynikowa gęstość wynosi 0,04 Tesli.

Wysoka wartość B oznacza silniejsze pole magnetyczne, co jest istotne w zastosowaniach przemysłowych i medycznych.
Pętla histerezy ilustruje zachowanie materiału magnetycznego podczas cykli magnesowania i rozmagnesowywania. Jest idealny do zastosowań w transformatorach i silnikach elektrycznych.
jest wyrażana w jednostkach takich jak tesle (T) w układzie SI lub gausy (G) w układzie CGS. Wyższe wartości indukcji wskazują na silniejsze pole magnetyczne.
Linia siły magnetycznej, zwana także linią pola magnetycznego, to ścieżka wskazująca, jak poruszałyby się bieguny magnetyczne w danym polu. Gęstość linii pola odzwierciedla siłę pola w różnych miejscach.
Ścieżka magnetyczna odnosi się do konfiguracji obejmującej materiały magnetyczne, szczeliny powietrzne i inne elementy. Odpowiednio zaprojektowana ścieżka zapewnia efektywną transmisję energii magnetycznej.
Jest kluczowym parametrem w projektowaniu obwodów magnetycznych. Materiały o wysokiej przenikalności są efektywniejsze w koncentracji pola magnetycznego.
Bieguny magnetyczne to regiony, gdzie pole magnetyczne jest najsilniejsze. Zrozumienie interakcji między biegunami jest kluczowe w projektowaniu układów magnetycznych.
Nasycenie magnetyczne określa maksymalne natężenie pola magnetycznego, jakie może osiągnąć materiał. Ten parametr jest kluczowy przy wyborze materiałów do zastosowań w wysokich polach magnetycznych.
Magnesowanie to proces nadawania materiałowi właściwości magnetycznych przez uporządkowanie domen magnetycznych. Zdolność do magnesowania jest istotna w projektowaniu magnesów trwałych i elektromagnesów.
Magnetyzacja odnosi się do procesu wyrównywania lub indukowania pola magnetycznego w materiale. Można ją osiągnąć poprzez kontakt z polem magnetycznym, przepływ prądu elektrycznego lub inne magnesy.
Krzywa magnetyzacji, zwana także krzywą rozmagnesowania lub krzywą B-H, przedstawia zależność między natężeniem pola magnetycznego (H) a indukcją magnetyczną (B). pomocne w wyborze materiałów do konkretnych zastosowań.
Namagnesowany oznacza stan materiału, w którym posiada on pole magnetyczne lub został namagnesowany. Można go uzyskać poprzez ekspozycję na pole magnetyczne, kontakt z magnesami lub przepływ prądu elektrycznego.
Siła magnetomotoryczna (mmf) to miara różnicy potencjałów magnetycznych. Wyrażana w amperozwojach (At) lub gilbertach (Gb).
Materiał w kontekście magnetyzmu odnosi się do substancji posiadającej właściwości magnetyczne lub podatnej na wpływ pola magnetycznego. materiały ferromagnetyczne, takie jak żelazo, mogą być trwale namagnesowane.
Maksymalna gęstość energii magnetycznej, oznaczany jako BHmax, reprezentuje maksymalną zdolność magnesu do gromadzenia i uwalniania energii magnetycznej.

Wzór opisujący BHmax przedstawia się następująco:
BHmax = B × H

Gdzie:
B: Gęstość strumienia magnetycznego (Tesla)
H: Natężenie pola magnetycznego (A/m)

Dla magnesu o wartości B = 1,2 T i H = 800 kA/m, BHmax wynosi 960 kJ/m³.

Wysoka wartość BHmax jest charakterystyczna dla magnesów neodymowych, co czyni je niezastąpionymi w zaawansowanych zastosowaniach przemysłowych.
Maksymalna temperatura pracy (Tmax) to najwyższa temperatura, przy której materiał magnetyczny może działać bez znaczącej degradacji lub utraty właściwości magnetycznych. Zapewnia stabilność i wydajność materiału w określonych warunkach pracy.
Makswell to reprezentuje ilość strumienia magnetycznego przechodzącego przez powierzchnię jednego centymetra kwadratowego w polu magnetycznym o sile jednego gausa. Jednostka ta jest używana w systemie CGS i odpowiada 10^−8 weberów (Wb).
Mega Gauss Oersteds (MGOe) to jednostka używana do wyrażania ilości energii magnetycznej przechowywanej w magnesie na jednostkę objętości. 1 MGOe odpowiada milionowi gauss-oerstedów, co czyni ją wygodną jednostką do porównywania wydajności i siły magnetycznej magnesów w zastosowaniach przemysłowych.
Monopol magnetyczny odnosi się do hipotetycznego pojedynczego bieguna magnetycznego, który istnieje samodzielnie jako północny lub południowy biegun magnetyczny. do tej pory monopole nie zostały zaobserwowane w naturze.

Litera: N

Klasa N odnosi się do klasyfikacji magnesów neodymowych w oparciu o ich właściwości magnetyczne i wydajność. Wyższe wartości klasy N odpowiadają silniejszym magnesom o lepszych właściwościach magnetycznych.
Biegun północny to biegun, który po zawieszeniu swobodnym wskazuje geograficzny biegun północny Ziemi. Biegun północny magnesu przyciąga biegun południowy innego magnesu, generując siłę przyciągania magnetycznego.

Litera: O

Oersted to jednostka używana do mierzenia natężenia pola magnetycznego (H). 1 oersted to pole, które wywiera siłę jednej dyny na jednostkowy biegun magnetyczny w odległości jednego centymetra.
Obwód otwarty odnosi się do stanu, w którym obwód magnetyczny nie jest zamknięty lub kompletny. W takim stanie linie pola magnetycznego nie mogą tworzyć zamkniętej pętli, co skutkuje osłabieniem pola magnetycznego.
Orientacja odnosi się do decyduje o kierunku i rozkładzie pola magnetycznego lub strumienia. Prawidłowa orientacja jest kluczowa dla osiągnięcia pożądanych właściwości magnetycznych i optymalizacji systemów magnetycznych.

Litera: P

Materiały paramagnetyczne to substancje, które wykazują paramagnetyzm i są słabo przyciągane do pól magnetycznych. przykłady to aluminium, mangan i tlen.
Paramagnetyzm to właściwość materiałów, które są słabo przyciągane do pól magnetycznych. Materiał traci magnetyzm po usunięciu pola zewnętrznego, co wynika z obecności niesparowanych elektronów.
Magnes trwały to generuje trwałe pole magnetyczne bez potrzeby zewnętrznego pola magnetycznego. Jest wykonany z materiałów o silnych właściwościach magnetycznych, takich jak żelazo, nikiel czy stopy kobaltu.
Są wykonane z materiałów o wysokiej retencji magnetycznej. Znajdują zastosowanie w urządzeniach wymagających stałego pola magnetycznego, takich jak głośniki, silniki i generatory.
Przenikalność magnetyczna to właściwość materiału określająca jego zdolność do przewodzenia strumienia magnetycznego. Wysoka przenikalność umożliwia efektywne przenoszenie strumienia magnetycznego, co jest kluczowe w projektowaniu obwodów magnetycznych.
Przenikalność magnetyczna, oznaczana symbolem P, określa łatwość, z jaką strumień magnetyczny może przepływać przez określony obwód magnetyczny.

Przenikalność można obliczyć za pomocą wzoru:
P = (μ × A) / l

Gdzie:
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)
l: Długość ścieżki magnetycznej (m)

Dla materiału o μ = 4π × 10⁻⁷ H/m, A = 0,01 m² i l = 0,1 m, permeance wynosi 1,26 × 10⁻⁵ H.

Permeance jest kluczowym parametrem w projektowaniu obwodów magnetycznych, szczególnie w aplikacjach wymagających minimalnych strat magnetycznych.
wskazuje nachylenie linii pracy na krzywej rozmagnesowania. jest istotny przy projektowaniu efektywnych obwodów magnetycznych.
Zapewnia ochronę przed korozją, utlenianiem i demagnetyzacją, co zwiększa trwałość magnesów. Dzięki powłokom magnesy mogą być używane w trudnych warunkach środowiskowych.
Polaryzacja opisuje orientację pola magnetycznego w magnesie neodymowym, który ma dwa bieguny: północny i południowy. odgrywa istotną rolę w projektowaniu urządzeń opartych na magnesach.
Biegun magnetyczny odnosi się do jednego z dwóch końców magnesu, gdzie pole magnetyczne jest najsilniejsze: północnego lub południowego. określają sposób zachowania magnesów w polach zewnętrznych.
Siła przyciągania, znana również jako siła trzymania, opisuje zdolność magnesu do utrzymania przyczepności. Można ją oszacować za pomocą wzoru:
F = B² × A / (2 × μ₀), gdzie:
F - siła przyciągania (w niutonach, N).
B - gęstość strumienia magnetycznego na powierzchni magnesu (w teslach, T).
A - powierzchnia styku magnesu z materiałem (w m²).
μ₀ - przenikalność magnetyczna próżni (4π × 10⁻⁷ H/m).

Przykład: W przypadku, gdy gęstość strumienia magnetycznego to 1.2 T, a powierzchnia styku magnesu to 0.005 m², siła przyciągania wynosi:
F = (1.2)² × 0.005 / (2 × 4π × 10⁻⁷) ≈ 572 N.

Litera: R

Metale ziem rzadkich to grupa pierwiastków chemicznych, takich jak neodym, które stanowią kluczowy składnik magnesów neodymowych. stanowią podstawę innowacyjnych rozwiązań technologicznych.
Wykonane są z pierwiastków ziem rzadkich, takich jak neodym, dysproz czy prazeodym. Ich wysoka wydajność sprawia, że są niezastąpione w wielu zastosowaniach.
Względna przenikalność magnetyczna to miara, jak łatwo materiał może zostać namagnesowany w porównaniu do próżni. jest kluczowym parametrem w inżynierii magnetycznej.
Opór magnetyczny, oznaczana symbolem R, jest miarą oporu obwodu magnetycznego wobec przepływu strumienia magnetycznego.

Reluctance można obliczyć przy użyciu wzoru:
R = l / (μ × A)

Gdzie:
R: Opór magnetyczny (1/H)
l: Długość ścieżki magnetycznej (m)
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)

Przykładowo, dla l = 0,2 m, μ = 4π × 10⁻⁷ H/m i A = 0,01 m², opór magnetyczny wynosi około 1,59 × 10⁶ 1/H.

Reluctance jest analogiczna do oporu elektrycznego w obwodach prądu stałego, co czyni ją kluczowym parametrem w projektowaniu obwodów magnetycznych.
Reluktancja to miara oporu, jaki obwód magnetyczny stawia przepływowi strumienia magnetycznego. jest istotnym parametrem w ocenie efektywności systemów magnetycznych.
Remanencja, oznaczana często jako Bd, to miara magnetyzmu resztkowego, który pozostaje w magnesie neodymowym po jego nasyceniu i usunięciu zewnętrznego pola magnetycznego. Jest to kluczowy parametr w ocenie siły i wydajności magnesu.
Zjawisko to wynika z przeciwnych pól magnetycznych generowanych przez magnesy, które się nawzajem odpychają. Siła odpychania jest proporcjonalna do siły magnetycznej i odległości między magnesami.
Ścieżka powrotna w obwodzie magnetycznym z magnesami neodymowymi odnosi się do drogi, którą strumień magnetyczny przemieszcza się, aby zamknąć obwód magnetyczny. Jest kluczowym elementem w projektowaniu efektywnych obwodów magnetycznych.

Litera: S

Shear force, oznaczana symbolem Fs, odnosi się do siły wymaganej do przesunięcia magnesu wzdłuż powierzchni styku w kierunku równoległym do płaszczyzny kontaktu.

Siłę ścinania można obliczyć za pomocą wzoru:
Fs = F × tan(θ)

Gdzie:
F: Siła przyciągania (N)
θ: Kąt nachylenia powierzchni styku (rad)

Im większy kąt nachylenia, tym większa siła wymagana do przesunięcia magnesu.

Parametr ten odgrywa kluczową rolę w aplikacjach takich jak mocowania magnetyczne lub mechanizmy przesuwne.
To biegun, który wskazuje w stronę geograficznego bieguna południowego Ziemi, gdy jest swobodnie zawieszony. Magnes o biegunie południowym przyciąga biegun północny innego magnesu, co skutkuje siłą przyciągania. Biegun południowy odgrywa kluczową rolę w układach magnetycznych i projektach wymagających precyzyjnego pozycjonowania.
Proces ten polega na konfiguracji magnesów w szeregu lub równolegle, co intensyfikuje pole magnetyczne. To rozwiązanie pozwala na uzyskanie silniejszych interakcji magnetycznych w takich zastosowaniach, jak separatory magnetyczne, uchwyty czy czujniki.

Litera: T

Magnesy neodymowe mogą osiągać wysokie wartości gęstości strumienia, mierzone w teslach (T) lub militeslach (mT). Tesla znajduje szerokie zastosowanie w ocenie wydajności magnesów oraz projektowaniu precyzyjnych systemów magnetycznych.
Magnesy anizotropowe mają określony kierunek magnesowania, co zapewnia wyższą wydajność w porównaniu z magnesami izotropowymi. Z kolei magnesy izotropowe można magnesować w dowolnym kierunku, co czyni je bardziej uniwersalnymi. Magnesy izotropowe są często używane w prostych aplikacjach z uwagi na swobodę w wyborze kierunku magnesowania.

Litera: W

Weber jest jednostką miary strumienia magnetycznego, która reprezentuje całkowitą liczbę linii pola magnetycznego przechodzących przez określoną powierzchnię. Weber jest kluczowym parametrem w ocenie i kwantyfikacji pól magnetycznych oraz strumieni w magnesach neodymowych.
Waga magnesu neodymowego jest istotnym parametrem wpływającym na jego zastosowania. Można ją prosto określić na podstawie jego gęstości i objętości przy użyciu wzoru:
m = ρ × V, gdzie:
m - masa magnesu (w gramach lub kilogramach).
ρ - gęstość magnesu (zwykle 7.5 g/cm³).
V - objętość magnesu (w cm³ lub m³).

Dla magnesu o typowej gęstości 7.5 g/cm³ i objętości 10 cm³, waga wynosi:
m = 7.5 × 10 = 75 g.

Obliczenie wagi pomaga lepiej dobrać magnes do konkretnego zastosowania.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98