magnesy neodymowe

Neodymowe magnesy co to? Poszukujesz mocnych magnesów z neodymu o udźwigu? Wykaz wszystkich produktów na magazynie znajduje się na spisie poniżej sprawdź cennik magnesów

magnes do poszukiwań w wodzie F300 GOLD z silnym uchem bocznym i liną

Gdzie kupić bardzo mocny UM magnes neodymowy do poszukiwań? Uchwyty z magnesów w szczelnej i trwałej stalowej obudowie doskonale się nadają do pracy w trudnych, wymagających pogodowych warunkach, w tym na śniegu i w deszczu zobacz więcej...

uchwyty magnetyczne

Uchwyty magnetyczne mogą być wykorzystywane do usprawnienia procesów produkcyjnych, eksploracji dna morza lub do odnajdywania meteorów ze złota. Mocowania to śruba 3x [M10] duża siła zobacz...

Obiecujemy wysyłkę zamówionych magnesów w dniu zakupu jeżeli zamówienie przyjęte jest do 14:00 w dni pracujące.

logo Dhit sp. z o.o.

Słownik terminologii magnetycznej

Jak odnaleźć się w świecie magnesów neodymowych?

Witamy w naszym szczegółowym słowniku skierowanym na fascynujący świat magnesów neodymowych. Jako zaufany lider w dostarczaniu najlepszych rozwiązań magnetycznych, jesteśmy świadomi, jak kluczowe jest posiadanie gruntownej znajomości na temat terminologii z tej wyjątkowej dziedziny. Ten słownik został starannie opracowany, aby stać się wartościowym źródłem informacji dla wszelkich zainteresowanych, zainteresowanego magnesami – czy jesteś doświadczonym specjalistą branżowym, pasjonatem, czy entuzjastą nauki magnesów.

W naszym słowniku znajdziesz czytelne i wyczerpujące wyjaśnienia kluczowych terminów i konceptów związanych z magnesami neodymowymi. Od mechanizmów pól magnetycznych i indukcji magnetycznej, przez krzywe magnesowania, aż po rodzaje materiałów i zaawansowane technologie magnetyczne – każda definicja została stworzona z intencją poszerzeniu Twojej wiedzy oraz przystępności nawet skomplikowanych koncepcji. Niezależnie od tego, czy zgłębiasz zastosowania magnesów w przemyśle, realizujesz projekty badawcze, czy realizujesz własne projekty DIY, ten słownik pomoże Ci odnaleźć się.

Zgłębiaj fascynujący świat magnesów neodymowych z pewnością siebie. Poszerzaj swoją wiedzę, poznawaj ciekawostki i poznawaj zastosowania tych innowacyjnych materiałów, zgłębiając terminy i teorie, które wpływają na ich użyteczność i wszechstronność. Ten słownik może być Twoim narzędziem w zgłębianiu nieustannie zmieniającego się świata technologii magnetycznych.

Litera: A

Przerwa powietrzna to przestrzeń lub innym niemagnetycznym materiałem, która oddziela magnes od innego obiektu. Wzrost odległości powoduje osłabienie siły przyciągania. Wzór: B = μ0(H - M), gdzie B to indukcja magnetyczna, μ0 to przenikalność próżni, H to natężenie pola, a M to magnetyzacja.
Materiał anizotropowy, takie jak neodymowe magnesy, ma właściwości zależne od kierunku. Magnesy o preferencyjnym kierunku magnesowania są wydajniejsze od izotropowych, ale ich magnesowanie odbywa się wyłącznie w jednym kierunku.
Wyżarzanie to metoda eliminacji naprężeń wewnętrznych w materiałach magnetycznych. Przeprowadza się je w kontrolowanych warunkach, zwykle w próżni, aby zapobiec degradacji materiału. Wyżarzanie zwiększa właściwości magnetyczne i pozwala dostosować materiał do wymagań aplikacji.
Magnesowanie osiowe oznacza, że bieguny magnetyczne są rozmieszczone wzdłuż osi magnesu, a linie siły magnetycznej przebiegają wzdłuż długości magnesu. Jest to powszechnie stosowane w magnesach pierścieniowych oraz kulistych. Wzór: Bz = (Br/2) * [(L + 2z) / (L^2 + 4z^2)^0.5 - (L - 2z) / (L^2 + 4z^2)^0.5].

Litera: B

Indukcja magnetyczna B to ilość strumienia magnetycznego przechodzącego przez obiekt. Jest mierzona w teslach. Wzór: B = μ0(H + M), gdzie μ0 to przenikalność próżni, H to natężenie pola zewnętrznego, a M to magnetyzacja.
Pętla histerezy to graficzna reprezentacja zależności między indukcją magnetyczną (B) a siłą magnesowania. Pozwala określić takie właściwości jak energia strat magnetycznych. Pętla histerezy stanowi podstawę przy ocenie materiałów stosowanych w silnikach elektrycznych.
Indukcja remanentna Bd to pozostałość, które pozostaje w magnesie po usunięciu pola zewnętrznego. Jest mierzona w jednostkach tesla i reprezentuje zdolność materiału do zachowania magnetyzmu.
Nachylenie linii pracy, oznaczone jako Bd/Hd, to współczynnik opisujący przenikalność magnetyczną materiału. Wzór: Bd/Hd = (Br - Hd) / Hd. Jest to kluczowy parametr przy projektowaniu obwodów magnetycznych.
Bg oznacza średnią wartość indukcji magnetycznej w przerwie powietrznej. Jest to ważny element przy projektowaniu urządzeń opartych na obwodach magnetycznych. Wzór: Bg = Φ / A, gdzie Φ to strumień magnetyczny, a A to powierzchnia przerwy powietrznej.

Litera: C

System jednostek C.G.S. to najstarszy układ miar. Pomimo że został zastąpiony, C.G.S. wciąż znajduje zastosowanie w danych dotyczących magnetyzmu. Jednostki w tym systemie obejmują oraz długość, masę i czas.
Obwód zamknięty odnosi się do konfiguracji, w której strumień magnetyczny tworzy pełną pętlę. Wykorzystuje się materiały o wysokiej przenikalności, które zapewniają minimalizując straty strumienia. Takie obwody są kluczowe w zastosowaniach wymagających kontrolowanych pól magnetycznych.
Siła koercji, oznaczana jako Hc, to natężenie pola potrzebne do rozmagnesowania materiału. Parametr ten mierzy trwałość magnetycznych właściwości. Wzór: Hc = -M/χ, gdzie M to magnetyzacja, a χ to przenikalność magnetyczna.
Koercja to miara odporności materiału magnetycznego na rozmagnesowanie. Parametr ten jest istotny przy projektowaniu trwałych magnesów stosowanych w silnikach i generatorach.
Koercja wewnętrzna określa zdolność materiału do zachowania magnetyzmu. Mierzy siłę demagnetyzującą na indukcji wewnętrznej (Bi). Materiały o wysokiej koercji zapewniają stabilność magnetyczną.
Temperatura Curie to punkt, w którym przechodzą w stan paramagnetyczny. Po przekroczeniu tej temperatury materiał przestaje wykazywać silne magnetyczne zachowania. Wzór: Tc = (2kB / μ0) * J0^2 / (χ), gdzie kB to stała Boltzmanna, a J0 to moment magnetyczny.

Litera: D

Rozmagnesowanie odnosi się do procesu osłabienia resztkowej indukcji w materiale. Metody obejmują lub techniki rozmagnesowania, takie jak odmagnesowywanie. Proces ten jest kluczowy w zastosowaniach wymagających lub całkowitego usunięcia magnetyzmu.
Krzywa rozmagnesowania przedstawia zależność w cyklach magnetyzacji i rozmagnesowania. Pokazuje właściwości histerezy materiału, takie jak koercja i indukcja remanentna. Jest to narzędzie niezbędne do analizy magnetycznych cech materiałów.
Siła rozmagnesowująca odnosi się do pola przeciwnego, które wprowadza rozmagnesowanie. Pozwala to na kontrolowanie poziomu magnetyzacji w materiałach.
Rozmagnesowany materiał to taki, w którym indukcja remanentna została zredukowana do zera. Stan ten osiąga się poprzez stosowanie zmiennego pola magnetycznego. Rozmagnesowanie jest ważne w eliminacji wpływów magnetycznych.
Gęstość magnesu neodymowego, zazwyczaj równa około 7.5 g/cm³, jest jednym z kluczowych parametrów określających jego właściwości magnetyczne. Gęstość można łatwo obliczyć za pomocą wzoru:
ρ = m / V, gdzie:
ρ - gęstość (w g/cm³ lub kg/m³).
m - masa magnesu (w gramach lub kilogramach).
V - objętość magnesu (w cm³ lub m³).

Przykład: Dla magnesu o masie 150 g i objętości 20 cm³, gęstość wynosi:
ρ = 150 / 20 = 7.5 g/cm³.

Dzięki znajomości gęstości można dokładniej określić parametry pracy magnesu w różnych zastosowaniach.
Materiał diamagnetyczny wykazuje słabe odpychanie od pola magnetycznego. Pod wpływem pola zewnętrznego powodujące odpychanie. Zjawisko to wynika z prądów indukowanych w materiale.
Średnica to odległość między najdalszymi punktami na powierzchni lub innego geometrycznego kształtu. Jest to kluczowy parametr przy projektowaniu układów magnetycznych.
Magnesy diametralnie namagnesowane mają bieguny umieszczone na przeciwnych stronach średnicy. Są przydatne w zastosowaniach wymagających unikalnych wzorców pola magnetycznego.
Tolerancja wymiarowa określa zakres zmienności wymiarów magnesu. Jest kluczowa przy integracji magnetycznych komponentów w układzie.
Wymiary odnoszą się do takich jak długość, szerokość, wysokość lub średnica magnesu. Dokładne określenie wymiarów jest kluczowe dla poprawnego działania systemów magnetycznych.
Kierunek magnesowania określa ścieżkę, wzdłuż której powstaje pole magnetyczne. Jest to cecha kluczowa, która wpływa na interakcje pola z innymi elementami.
Domeny to strefy w materiale magnetycznym, w których momenty magnetyczne są wyrównane w tym samym kierunku. Mogą być zmieniane przez czynniki fizyczne i mechaniczne.

Litera: E

Prądy wirowe to elektryczne prądy indukowane w materiałach przewodzących podczas zmian w polu magnetycznym. Powodują one problemy z efektywnością. Stosowanie rdzeni laminowanych lub osłon magnetycznych minimalizuje ich wpływ i zwiększa wydajność.
Elektromagnes to magnes wytworzony przez przepływ prądu elektrycznego. Siła pola magnetycznego zależy od natężenia prądu. Elektromagnesy mają zastosowanie w przemyśle i technologiach.
Energia magnetyczna to miara energii przechowywanej w materiale magnetycznym. Obliczana jako produkt dwóch parametrów na krzywej rozmagnesowania. Wyrażana w różnych jednostkach. Jest ważnym wskaźnikiem przy ocenie ich efektywności w aplikacjach.
Energia magnetyczna to maksymalna energia zgromadzona w magnesie. Magnesy o wyższej energii mają lepszą wydajność.

Litera: F

Ferryty to substancje składające się głównie z tlenku żelaza (Fe2O3). Są cenione za swoje właściwości wysokoczęstotliwościowe. Używane w transformatorach, induktorach czy urządzeniach telekomunikacyjnych.
Materiał ferromagnetyczny charakteryzuje się silnymi właściwościami magnetycznymi. Atomy w takim materiale wytwarzając silne pole magnetyczne. Przykłady to oraz ich stopy. Stanowią podstawę wielu zastosowań magnetycznych dzięki zdolności do utrzymania namagnesowania.
Gęstość strumienia magnetycznego, oznaczana jako wskazuje ilość strumienia przechodzącego przez jednostkę powierzchni. Mierzona w standardowych jednostkach magnetycznych. Jest to kluczowy parametr przy ocenie wydajności magnesów.
Miernik strumienia magnetycznego służy do pomiaru indukcji magnetycznej (B). Wykorzystuje różne technologie, takie jak do dokładnych pomiarów w punktach przestrzeni. Jest ważnym narzędziem inżynierskim.

Litera: G

Gauss to jednostka miary indukcji magnetycznej. Jeden Gauss (G) odpowiada pojęciu indukcji magnetycznej w mniejszych skalach. Jednostka historycznie popularna.
Gaussomierz to przyrząd określający indukcję w punktach przestrzeni. Stosuje sensory efektu Halla. Pomocny w diagnostyce magnetycznej.
Gilbert to nazwa pochodzi od Williama Gilberta, pioniera badań magnetycznych. Jeden Gilbert odpowiada dawnej miarze zastępowanej w SI jednostką amperozwojów (At).
Klasa magnesu odnosi się do jego właściwości magnetycznych, takich jak BHmax czy Hc. Wyższe klasy oferują lepsze pole magnetyczne i stabilność.

Litera: H

Efekt ten znajduje zastosowanie w pomiarach pola magnetycznego i detekcji pozycji. Urządzenia te odgrywają kluczową rolę w automatyce przemysłowej i precyzyjnych pomiarach.
Siła koercji (Hc) oznacza parametr opisujący odporność materiału na rozmagnesowanie. Wyrażana w oerstedach (Oe) lub kiloamperach na metr (kA/m). Wyższe wartości Hc wskazują na odporność na wpływy zewnętrzne.
Hd to natężenie pola magnetycznego potrzebne do osiągnięcia określonej indukcji remanentnej (Bd). Mierzona w różnych jednostkach magnetycznych.
Magnes o wysokim gradiencie pola wytwarza z dużą precyzją kontroluje gradient. Zastosowania obejmują czy badania naukowe wymagające zaawansowanych parametrów pola.
Hm oznacza kluczowy parametr w projektowaniu układów magnetycznych. Jest istotna przy projektowaniu systemów wymagających dużych pól magnetycznych.
Pole jednorodne charakteryzuje się brakiem zmian intensywności w danej przestrzeni. Jest kluczowe w zastosowaniach wymagających precyzyjnego pola.
Magnes podkowiasty ma zwiększając siłę pola w tej przestrzeni. oraz zastosowaniach wymagających skupionego pola.
Efektywna siła magnesowania (Hs) to pole potrzebne do pełnego namagnesowania materiału do nasycenia. Mierzona w miarach siły magnetycznej.
Wykres histerezy, zwany również permeametrem, przedstawia zmiany indukcji magnetycznej (B) w funkcji siły magnesowania (H). Stosowany w optymalizacji projektów magnetycznych.
Pętla histerezy to graficzne przedstawienie relacji między indukcją magnetyczną (B) a siłą magnesowania (H). Dostarcza informacji o zachowaniu materiału podczas cykli magnesowania.
Histereza odnosi się do cechy materiałów magnetycznych. Straty histerezowe to przemiany energii w ciepło. Ważne przy projektowaniu transformatorów czy silników.

Litera: I

Średnica wewnętrzna (ID) to odległość między wewnętrznymi powierzchniami obiektu. Jest istotnym parametrem w projektowaniu układów magnetycznych.
Indukcja magnetyczna (B) opisuje siłę pola magnetycznego w materiale lub przestrzeni. Wyrażana w standardowych jednostkach SI. Jest kluczowa dla projektowania i analizy układów magnetycznych.
Straty nieodwracalne to skutki działania wysokich temperatur, stresu mechanicznego lub demagnetyzujących pól. Powodują spadek właściwości magnetycznych i wydajności materiału.
Materiał izotropowy nie zależy od orientacji pola magnetycznego. stosowany w zastosowaniach wymagających równomiernego zachowania magnetycznego.

Litera: K

Przytrzymywacz magnetyczny to element wykonany z miękkiego żelaza lub materiału ferromagnetycznego, umieszczany na lub pomiędzy biegunami magnesu stałego. pomaga w utrzymaniu mocy magnesu. Stosowany głównie z historycznymi modelami magnesów.
Kilogauss (kG) to jednostka używana do pomiaru gęstości strumienia magnetycznego. Jeden kilogauss (1 kG) odpowiada 1000 gaussom. jest szeroko stosowana w branżach przemysłowych wymagających silnych pól magnetycznych, takich jak separatory magnetyczne czy sprzęt medyczny.

Litera: L

Linia obciążenia przedstawia punkty pracy materiału magnetycznego na krzywej rozmagnesowania. Pomaga w ocenie zachowania i stabilności materiału magnetycznego.
Magnetyt to naturalnie występujący materiał magnetyczny składający się z tlenku żelaza (Fe3O4). Wykorzystywany historycznie do kompasów.

Litera: M

Magnes to obiekt wytwarzający pole magnetyczne, posiadający bieguny magnetyczne. znajduje zastosowanie w elektronice, silnikach, generatorach i nośnikach magnetycznych.
Zestaw magnetyczny to konstrukcja projektowana w celu uzyskania określonych właściwości magnetycznych. systemach unoszenia magnetycznego.
Oś magnetyczna to wyimaginowana linia w magnesie, gdzie pole magnetyczne jest najbardziej skoncentrowane lub intensywne. Łączy bieguny magnesu i określa orientację jego pola magnetycznego.
Obwód magnetyczny to ścieżka, przez którą przepływa strumień magnetyczny. jest kluczowy w projektowaniu urządzeń magnetycznych.
Energia magnetyczna to potencjał pola magnetycznego do wykonywania pracy. związana z siłą pola magnetycznego i objętością przestrzeni.
Pole magnetyczne (B) to obszar, w którym materiały magnetyczne lub ładunki elektryczne podlegają sile magnetycznej. Reprezentowane przez linie strumienia magnetycznego.
Natężenie pola magnetycznego (H) to miara siły magnesowania stosowanej do materiału magnetycznego. wyrażane w amperach na metr (A/m).
Strumień magnetyczny to ilość linii pola magnetycznego przechodzących przez określony obszar. Wyrażany w weberach (Wb).
Gęstość strumienia magnetycznego, oznaczana jako B, jest miarą siły lub koncentracji pola magnetycznego. Reprezentuje ilość strumienia magnetycznego przechodzącego przez jednostkową powierzchnię.

Oblicza się ją za pomocą równania:
B = Φ / A

Gdzie:
B: Magnetic flux density (Tesla, Gauss)
Φ: Magnetic flux (Weber)
A: Surface area (m²)

Jeśli powierzchnia wynosi 0,05 m², a strumień magnetyczny to 0,002 Weber, wynikowa gęstość wynosi 0,04 Tesli.

Wysoka wartość B oznacza silniejsze pole magnetyczne, co jest istotne w zastosowaniach przemysłowych i medycznych.
Pętla histerezy ilustruje zachowanie materiału magnetycznego podczas cykli magnesowania i rozmagnesowywania. Materiał z węższą pętlą ma mniejsze straty energii.
Indukcja magnetyczna mierzy ilość strumienia magnetycznego przechodzącego przez jednostkę powierzchni. Wyższe wartości indukcji wskazują na silniejsze pole magnetyczne.
Linia siły magnetycznej, zwana także linią pola magnetycznego, to ścieżka wskazująca, jak poruszałyby się bieguny magnetyczne w danym polu. Gęstość linii pola odzwierciedla siłę pola w różnych miejscach.
Ścieżka magnetyczna odnosi się do trasy, którą podąża strumień magnetyczny w obwodzie magnetycznym lub systemie. minimalizuje straty magnetyczne.
Przenikalność magnetyczna określa zdolność materiału do przewodzenia strumienia magnetycznego. Materiały o wysokiej przenikalności są efektywniejsze w koncentracji pola magnetycznego.
Każdy magnes ma biegun północny i południowy. Polaryzacja biegunów determinuje siły przyciągania i odpychania między magnesami.
Po osiągnięciu nasycenia dalszy wzrost pola zewnętrznego nie zwiększa magnetyzacji. Ma również znaczenie w procesie projektowania obwodów magnetycznych.
Magnesowanie to proces nadawania materiałowi właściwości magnetycznych przez uporządkowanie domen magnetycznych. Zdolność do magnesowania jest istotna w projektowaniu magnesów trwałych i elektromagnesów.
Magnetyzacja odnosi się do rezultatu ustawienia momentów magnetycznych atomów lub cząsteczek w preferowanej orientacji. kluczowa dla działania magnesów i urządzeń magnetycznych.
Krzywa magnetyzacji, zwana także krzywą rozmagnesowania lub krzywą B-H, przedstawia zależność między natężeniem pola magnetycznego (H) a indukcją magnetyczną (B). pomocne w wyborze materiałów do konkretnych zastosowań.
Namagnesowany oznacza stan materiału, w którym posiada on pole magnetyczne lub został namagnesowany. materiał namagnesowany wykazuje właściwości magnetyczne i może przyciągać lub odpychać inne materiały magnetyczne.
Siła magnetomotoryczna (mmf) to miara zdolności do generowania pola magnetycznego w obwodzie magnetycznym. Wyrażana w amperozwojach (At) lub gilbertach (Gb).
Materiał w kontekście magnetyzmu odnosi się do substancji posiadającej właściwości magnetyczne lub podatnej na wpływ pola magnetycznego. materiały ferromagnetyczne, takie jak żelazo, mogą być trwale namagnesowane.
Maximum energy product, oznaczany jako BHmax, jest miarą maksymalnej energii, jaką może dostarczyć magnes na jednostkę objętości.

Oblicza się go za pomocą równania:
BHmax = B × H

Gdzie:
B: Gęstość strumienia magnetycznego (Tesla)
H: Natężenie pola magnetycznego (A/m)

Przykładowo, magnes z B = 1 T i H = 600 kA/m osiąga BHmax równy 600 kJ/m³.

BHmax jest kluczowym parametrem w ocenie wydajności magnesów, zwłaszcza w projektach wymagających maksymalnej efektywności energetycznej.
Maksymalna temperatura pracy (Tmax) to najwyższa temperatura, przy której materiał magnetyczny może działać bez znaczącej degradacji lub utraty właściwości magnetycznych. Zapewnia stabilność i wydajność materiału w określonych warunkach pracy.
Makswell to jednostka strumienia magnetycznego nazwana na cześć Jamesa Clerka Maxwella. Jednostka ta jest używana w systemie CGS i odpowiada 10^−8 weberów (Wb).
Mega Gauss Oersteds (MGOe) to jednostka używana do wyrażania maksymalnego iloczynu energii magnetycznej (BHmax) magnesów trwałych. 1 MGOe odpowiada milionowi gauss-oerstedów, co czyni ją wygodną jednostką do porównywania wydajności i siły magnetycznej magnesów w zastosowaniach przemysłowych.
Monopol magnetyczny odnosi się do hipotetycznego pojedynczego bieguna magnetycznego, który istnieje samodzielnie jako północny lub południowy biegun magnetyczny. do tej pory monopole nie zostały zaobserwowane w naturze.

Litera: N

Klasa N odnosi się do klasyfikacji magnesów neodymowych w oparciu o ich właściwości magnetyczne i wydajność. Wyższe wartości klasy N odpowiadają silniejszym magnesom o lepszych właściwościach magnetycznych.
Biegun północny to jeden z dwóch podstawowych biegunów magnetycznych magnesu. powiązany z kierunkiem wychodzących linii pola magnetycznego.

Litera: O

Oersted to nazwa pochodzi od Hansa Christiana Oersteda, który odkrył zależność między prądami elektrycznymi a polami magnetycznymi. 1 oersted to pole, które wywiera siłę jednej dyny na jednostkowy biegun magnetyczny w odległości jednego centymetra.
Obwód otwarty odnosi się do powodując przerwanie ścieżki strumienia magnetycznego. obwody otwarte mogą występować z powodu szczelin powietrznych lub niewystarczających materiałów magnetycznych.
Orientacja odnosi się do decyduje o kierunku i rozkładzie pola magnetycznego lub strumienia. może znacząco wpływać na interakcje między magnesami i wydajność obwodów magnetycznych.

Litera: P

Materiały paramagnetyczne to stają się namagnesowane w kierunku pola zewnętrznego dzięki wyrównaniu momentów magnetycznych atomów lub cząsteczek. Magnetyzm tych materiałów zanika po usunięciu pola zewnętrznego, co odróżnia je od materiałów ferromagnetycznych.
Paramagnetyzm to właściwość materiałów, które są słabo przyciągane do pól magnetycznych. przykładami są aluminium, platyna i tlen.
Magnes trwały to materiał lub obiekt, który zachowuje swoje właściwości magnetyczne na stałe. Jest wykonany z materiałów o silnych właściwościach magnetycznych, takich jak żelazo, nikiel czy stopy kobaltu.
Są wykonane z materiałów o wysokiej retencji magnetycznej. Znajdują zastosowanie w urządzeniach wymagających stałego pola magnetycznego, takich jak głośniki, silniki i generatory.
cecha pozwalająca materiałowi wspierać tworzenie pola magnetycznego. wartość przenikalności zależy od składu chemicznego i struktury materiału.
Permeance, oznaczana symbolem P, jest miarą zdolności materiału do przewodzenia strumienia magnetycznego.

Przenikalność można obliczyć za pomocą wzoru:
P = (μ × A) / l

Gdzie:
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)
l: Długość ścieżki magnetycznej (m)

Przykładowo, materiał o dużym polu przekroju i krótkiej ścieżce magnetycznej wykazuje wysoką przenikalność, co czyni go wydajnym w zastosowaniach magnetycznych.

Wysoka przenikalność jest istotna dla zwiększenia efektywności działania systemów magnetycznych.
Współczynnik przenikalności to stosunek remanencji (Br) do siły rozmagnesowania (Hd) w materiale magnetycznym. Współczynnik ten wpływa na stabilność magnetyczną i parametry takie jak iloczyn energii (BHmax) w obwodach magnetycznych.
Zapewnia ochronę przed korozją, utlenianiem i demagnetyzacją, co zwiększa trwałość magnesów. Dzięki powłokom magnesy mogą być używane w trudnych warunkach środowiskowych.
bieguny o tej samej polaryzacji odpychają się, a o przeciwnych przyciągają. odgrywa istotną rolę w projektowaniu urządzeń opartych na magnesach.
bieguny te determinują kierunek siły magnetycznej i interakcje między magnesami. Ich położenie i właściwości są kluczowe dla optymalizacji wydajności w zastosowaniach magnetycznych.
Siła przyciągania, znana również jako siła trzymania, opisuje siłę wymaganą do oddzielenia magnesu od powierzchni ferromagnetycznej. Można ją przybliżenie obliczyć za pomocą wzoru:
F = B² × A / (2 × μ₀), gdzie:
F - siła przyciągania (w niutonach, N).
B - gęstość strumienia magnetycznego na powierzchni magnesu (w teslach, T).
A - powierzchnia styku magnesu z materiałem (w m²).
μ₀ - przenikalność magnetyczna próżni (4π × 10⁻⁷ H/m).

Przykład: Jeśli gęstość strumienia magnetycznego wynosi 1.2 T, a powierzchnia styku magnesu to 0.005 m², siła przyciągania wynosi:
F = (1.2)² × 0.005 / (2 × 4π × 10⁻⁷) ≈ 572 N.

Litera: R

Metale ziem rzadkich to grupa pierwiastków chemicznych, takich jak neodym, które stanowią kluczowy składnik magnesów neodymowych. stanowią podstawę innowacyjnych rozwiązań technologicznych.
Wykonane są z pierwiastków ziem rzadkich, takich jak neodym, dysproz czy prazeodym. Znajdują zastosowanie w przemyśle, medycynie i elektronice, gdzie wymagane są silne pola magnetyczne.
Względna przenikalność magnetyczna to miara, jak łatwo materiał może zostać namagnesowany w porównaniu do próżni. Magnesy neodymowe wykazują wysoką względną przenikalność, co umożliwia efektywne projektowanie obwodów magnetycznych.
Opór magnetyczny, oznaczana symbolem R, jest miarą oporu obwodu magnetycznego wobec przepływu strumienia magnetycznego.

Wzór matematyczny dla oporu magnetycznego to:
R = l / (μ × A)

Gdzie:
R: Opór magnetyczny (1/H)
l: Długość ścieżki magnetycznej (m)
μ: Przenikalność magnetyczna materiału (H/m)
A: Pole przekroju magnetycznego (m²)

Im większy przekrój magnetyczny lub przenikalność, tym mniejszy opór magnetyczny.

Znajomość oporu magnetycznego umożliwia optymalizację działania systemów takich jak elektromagnesy, transformatory czy silniki elektryczne.
magnetyczny odpowiednik oporu elektrycznego w obwodach prądowych. Projektowanie i geometria magnesu oraz otaczających materiałów wpływają na reluktancję i wydajność obwodów magnetycznych.
Remanencja, oznaczana często jako Bd, to miara magnetyzmu resztkowego, który pozostaje w magnesie neodymowym po jego nasyceniu i usunięciu zewnętrznego pola magnetycznego. Jest to kluczowy parametr w ocenie siły i wydajności magnesu.
Odrzucanie odnosi się do zjawiska, w którym takie same bieguny magnesów neodymowych (np. północny do północnego) wywierają siłę, która je odpycha. Siła odpychania jest proporcjonalna do siły magnetycznej i odległości między magnesami.
Ścieżka powrotna w obwodzie magnetycznym z magnesami neodymowymi odnosi się do drogi, którą strumień magnetyczny przemieszcza się, aby zamknąć obwód magnetyczny. Dzięki odpowiedniemu projektowi ścieżki powrotnej można zmaksymalizować wydajność systemu i zminimalizować straty magnetyczne.

Litera: S

Siła ścinania, oznaczana symbolem Fs, odnosi się do siły wymaganej do przemieszczenia magnesu wzdłuż powierzchni styku w kierunku równoległym do płaszczyzny kontaktu.

Wzór dla siły ścinania to:
Fs = F × tan(θ)

Gdzie:
F: Siła przyciągania (N)
θ: Kąt nachylenia powierzchni styku (rad)

Im większy kąt nachylenia, tym większa siła wymagana do przesunięcia magnesu.

Parametr ten odgrywa kluczową rolę w aplikacjach takich jak mocowania magnetyczne lub mechanizmy przesuwne.
Biegun południowy jest jednym z dwóch podstawowych biegunów magnetycznych magnesu. Pole magnetyczne biegnie od bieguna północnego do południowego, co określa interakcje magnetyczne. Znajomość właściwości bieguna południowego jest niezbędna do zrozumienia zjawisk magnetycznych.
Układanie w stos odnosi się do praktyki łączenia wielu magnesów neodymowych, aby stworzyć zestaw o zwiększonej całkowitej sile magnetycznej. To rozwiązanie pozwala na uzyskanie bardziej efektywnego wykorzystania siły magnetycznej w takich zastosowaniach, jak separatory magnetyczne, uchwyty czy czujniki.

Litera: T

Magnesy neodymowe mogą osiągać wysokie wartości gęstości strumienia, mierzone w teslach (T) lub militeslach (mT). Tesla znajduje szerokie zastosowanie w ocenie wydajności magnesów oraz projektowaniu precyzyjnych systemów magnetycznych.
Magnesy anizotropowe mają określony kierunek magnesowania, co zapewnia wyższą wydajność w porównaniu z magnesami izotropowymi. Z kolei magnesy izotropowe można magnesować w dowolnym kierunku, co zapewnia wszechstronność ich zastosowań. Magnesy anizotropowe znajdują zastosowanie w aplikacjach o wysokich wymaganiach technologicznych.

Litera: W

Weber jest jednostką miary strumienia magnetycznego, która reprezentuje całkowitą liczbę linii pola magnetycznego przechodzących przez określoną powierzchnię. Weber jest kluczowym parametrem w ocenie i kwantyfikacji pól magnetycznych oraz strumieni w magnesach neodymowych.
Waga magnesu neodymowego jest Kluczowym czynnikiem wpływającym na jego zastosowania. Można ją łatwo obliczyć na podstawie jego gęstości i objętości przy użyciu wzoru:
m = ρ × V, gdzie:
m - masa magnesu (w gramach lub kilogramach).
ρ - gęstość magnesu (zwykle 7.5 g/cm³).
V - objętość magnesu (w cm³ lub m³).

Dla magnesu o typowej gęstości 7.5 g/cm³ i objętości 10 cm³, waga wynosi:
m = 7.5 × 10 = 75 g.

Znajomość wagi jest kluczowa w projektach, gdzie ważna jest równowaga masy i siły magnetycznej.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98