magnesy neodymowe

Magnesy neodymowe Nd2Fe14B - oferta naszego sklepu. Magnesy z neodymu znajdujące się aktualnie na stanach magazynowych znajdziesz na poniższej liście sprawdź cennik magnesów

uchwyt z magnesem dla poszukiwaczy F 400 GOLD z silnym uchem bocznym i liną

Gdzie kupić bardzo mocny UM magnes neodymowy do poszukiwań? Uchwyty z magnesami w szczelnej i trwałej stalowej obudowie nadają się doskonale do pracy w niedogodnych, ciężkich pogodowych warunkach, w tym podczas opadów deszczu i śniegu sprawdź ofertę...

magnesy z uchwytem

Magnetyczne uchwyty mogą być używane do usprawnienia produkcji, poszukiwań podwodnych terenów lub do znajdowania meteorytów ze złota. Mocowania to śruba 3x [M10] duża siła zobacz...

Gwarantujemy wysyłkę zamówionych magnesów w dzień zlecenia jeżeli zlecenie przyjęte jest do godziny 14:00 w dni pracujące.

logo Dhit sp. z o.o.

FAQ - pytania i odpowiedzi o magnesach neodymowych

Magnes neodymowy – co to jest i jak działa? Do czego używamy tych silnych magnesów?

Wejdź w świat magnesów neodymowych – poznaj ich siłę, zastosowania i tajemnice! Znajdziesz tutaj dokładne odpowiedzi na pytania, które pojawiają się najczęściej, rozwiewając wszelkie wątpliwości, jak działają i do czego można je wykorzystać. Dowiedz się, czemu magnesy neodymowe są najpotężniejsze wśród magnesów trwałych i jak mogą ułatwić Twoje życie.

zastosowania magnesów neodymowych
zastosowania magnesów

Wysyłka, dostawa i zwroty

Znajdź odpowiedzi na pytania dotyczące metod wysyłki, kosztów, terminów dostawy oraz zasad zwrotów. Dowiedz się, jak bezproblemowo zarządzać zamówieniami online.

Akceptujemy przelewy tradycyjne, szybkie z mBanku oraz wysyłamy przesyłki za pobraniem. Więcej informacji znajdziesz w sekcji transport.
Zamówienia są wysyłane każdego dnia roboczego, a przesyłki docierają w ciągu 24-48 godzin od momentu potwierdzenia płatności. Przy płatności za pobraniem wysyłki nadawane są każdego dnia roboczego około godziny 16, paczkomaty o godzinie 17-tej.

Praca z magnesami neodymowymi

Dowiedz się, jak bezpiecznie i efektywnie obsługiwać magnesy neodymowe – od mocowania po separację i użytkowanie w projektach.

Magnesy samoprzylepne umożliwiają łatwe przymocowanie magnesu do powierzchni niemagnetycznych, takich jak papier oraz inne materiały niemagnetyczne. Oferujemy zarówno magnesy w kształcie bloku, jak i okrągłe z samoprzylepną warstwą.

Zwykle magnesy te dostępne są w opakowaniach, gdzie jedna strona jest pokryta samoprzylepnym materiałem na biegunie południowym, a druga na biegunie północnym. Pozwala to na przyciąganie, gdy jest to potrzebne, np. do tworzenia zamknięć lub złącz.

Nasze magnesy samoprzylepne wykonane są z piankowego kleju, który również jest dostępny osobno w postaci dwustronnych naklejek samoprzylepnych. Ten klej wysokiej wydajności zapewnia doskonałą wytrzymałość na ścinanie, zapobiegając przesunięciom i unoszeniu krawędzi.

Aby użyć magnesu, wystarczy odkleić papier z kleju i przykleić go w wybranym miejscu. Klej jest na tyle silny, że pozwala na ponowne ustawienie magnesu, co umożliwia dokładne dopasowanie do specyfikacji. Po umieszczeniu magnesu w odpowiednim miejscu, należy go mocno docisnąć, aby zapewnić równomierne przyleganie.

Rekomendujemy, aby po przyklejeniu magnesu poczekać 24-48 godzin, aby klej dobrze stwardniał przed nałożeniem jakiejkolwiek siły na połączenie.
Magnesy neodymowe to jedne z najsilniejszych dostępnych magnesów na rynku. Wyróżniają się wieloma zaletami, które sprawiają, że są chętnie wybierane w wielu zastosowaniach:

Kluczowe cechy:
Niezwykle silna siła magnetyczna, pozwalająca na skuteczne przyciąganie nawet z dużej odległości.
Kompaktowe rozmiary, co oznacza, że nawet małe magnesy mają ogromną moc.
Wysoka odporność na rozmagnesowanie w standardowych warunkach użytkowania.
Szeroki zakres zastosowań, od przemysłowych po codzienne użycie w domu.
Wymagają jednak ostrożności podczas użytkowania, aby uniknąć uszkodzeń lub obrażeń.
Aby wybrać najlepszy magnes, warto przeprowadzić dokładne badania i zastanowić się nad rozmiarem oraz siłą. Na początku oszacuj, jaki kształt magnesu będzie potrzebny, np. czy chcesz użyć magnesu walcowego lub magnesu z otworem pod wkręt. Pamiętaj, że większy magnes jest silniejszy, ale może być również bardziej niebezpieczny w użyciu. Następnie zwróć uwagę na możliwość utrzymywania obciążeń, która jest kluczowa przy doborze magnesu do projektu. Więcej informacji na temat siły przyciągania znajdziesz w karcie produktu.
Magnesy są niezbędne w wielu projektach, zarówno do poprawy funkcji w domu, jak i jako część produktów sprzedawanych. W niektórych przypadkach konieczne jest ich sklejenie. Oto kilka wskazówek, które pomogą Ci osiągnąć sukces już za pierwszym razem.

Wskazówki aplikacyjne:
Zawsze przeczytaj instrukcje kleju, którego używasz.
Przed nałożeniem kleju, upewnij się, że powierzchnie są czyste. Resztki, tłuszcz czy brud mogą stworzyć barierę, która utrudni prawidłowe przyklejenie magnesu.
Zaleca się szlifowanie gładkiej powierzchni magnesu, co poprawia przyczepność kleju.
Klejenie magnesów do plastiku bywa trudniejsze z powodu problemów z uzyskaniem dobrej przyczepności kleju. Skonsultuj się z pomocą techniczną producenta kleju, aby uzyskać porady dotyczące plastiku.
Najlepszym wyborem kleju jest dwuskładnikowa żywica epoksydowa, która sprawdza się w większości przypadków. Polecane kleje to: Loctite Plastic Bonder Epoxy, E6000 Adhesive, Super Glue, Gorilla Glue, i wiele innych.
Unikaj używania pistoletów do kleju na gorąco, ponieważ wysoka temperatura może spowodować rozmagnesowanie magnesów.
Do montażu tablic rejestracyjnych zaleca się użycie dwóch magnesów MPL 40x18x10 / N38 - magnes neodymowy płytkowy pod zderzak oraz dwóch magnesów MPL 40x20x5 / N38 - magnes neodymowy płytkowy pod tablicę rejestracyjną. Ważne jest, aby pod tablicę przymocować cienką blachę, co pozwoli na przykrycie magnesów i zabezpieczenie ich przed odłączeniem się z powodu ciepła i wibracji. Ponieważ tablice rejestracyjne są wykonane z aluminium i nie są magnetyczne, blacha pomoże w utrzymaniu magnesów w pożądanej pozycji. Dodatkowo, nity na tablicy mogą tworzyć złudzenie, że tablica jest trwale przymocowana, co zwiększa ochronę przed kradzieżą.
Magnes przyciąga żelazo, ponieważ żelazo jest metalem silnie magnetycznym. Jego struktura atomowa pozwala na silne łączenie się z biegunami magnesu.
Magnes zazwyczaj nie przyciąga aluminium, ponieważ aluminium nie jest materiałów ferromagnetycznych. Jednakże, w określonych warunkach, jak w obecności silnych pól magnetycznych, aluminium może wykazywać pomniejsze efekty magnetyczne.
Magnes przyciąga metal, ponieważ niektóre metale, takie jak nikiel, mają cechy przyciągające magnesy. Gdy magnes zbliża się do stalowej powierzchni, powstają polaryzacje magnetyczne, które łączą magnes z metalem.
Użyj kompasu: Prosty sposób to użycie kompasu. Uważaj, by igła kompasu nie dotknęła magnesu, aby nie uszkodzić kompasu. Strzałka kompasu wskazuje biegun magnetyczny 'S'.
Skorzystaj z aplikacji na smartfonie: Istnieją aplikacje, które pomagają zidentyfikować bieguny magnesu.
Użyj teslametru: Teslametr pomiar indukcji magnetycznej i wskaże, który biegun jest który.
Wykrywacz biegunów magnetycznych: Możesz także zakupić przyrząd do wykrywania biegunów, który pomoże Ci wygodnie zidentyfikować bieguny. Więcej informacji o kierunkach magnetycznych znajdziesz na stronie NS magnesy.
Aby namagnesować magnes neodymowy, należy przeprowadzić proces zwany "indukcją magnetyczną". Istnieje kilka sposobów na namagnesowanie magnesu:
Przy pomocy innego magnesu neodymowego: Umieść magnes obok silnego magnesu neodymowego, tak aby przesuwaj magnesy, dopasowując ich bieguny.
Za pomocą przepływu prądu: Przełącz magnes na przewody elektryczne, co powoduje, że prąd generuje magnetyzm w magnesie.
Za pomocą urządzenia do indukcji magnetycznej: Urządzenia do indukcji magnetycznej dostępne w sklepach z elektroniką umożliwiają namagnesowanie magnesu przy użyciu silnego pola magnetycznego.

Ważne: Proces namagnesowania magnesu neodymowego może być trudny, jeśli magnes jest uszkodzony lub niekompletny. Więcej o metodach namagnesowania i kierunkach biegunów można znaleźć w naszym poradniku technologicznym.
Magnes i uchwyt magnetyczny różnią się konstrukcją i przeznaczeniem. Magnes to element wykonany z materiału magnetycznego, który przyciąga metale ferromagnetyczne, takie jak metale ferromagnetyczne. Stosowany jest w różnych dziedzinach, takich jak branża przemysłowa.

Uchwyt magnetyczny to magnes z zamontowaną obudową, która chroni go przed uszkodzeniami, takimi jak pęknięcia czy zarysowania. Dzięki specjalnej konstrukcji, uchwyt magnetyczny może mieć dodatkowe elementy, jak gwinty czy uchwyty, ułatwiające montaż i użytkowanie. Największą zaletą uchwytów jest ich większy udźwig, ale zasięg ich działania jest ograniczony. Więcej informacji o magnesach i uchwytach magnetycznych znajdziesz na stronie technologia.
Aby usunąć wgniecenia z blachy samochodowej, istnieje kilka metod. Jedną z nich jest użycie magnesu w połączeniu z dużą kulą ferromagnetyczną na drugiej stronie blachy. Dzięki temu możliwe jest odgięcie blachy, jednak metoda ta jest skuteczna tylko, gdy blacha ma grubość powyżej 0,6 mm.

Inną metodą jest technika PDR (Naprawa wgnieceń bez lakierowania), polegająca na prostowaniu blachy za pomocą specjalnego zestawu (koszt ok. 500 PLN). Ta pracochłonna metoda pozwala na usunięcie wgnieceń bez konieczności lakierowania.

Alternatywnie, można użyć urządzenia PDR 1000, które generuje pole magnetyczne i jest dedykowane do usuwania wgnieceń w elastycznych stalowych karoseriach. To rozwiązanie jest szybkie i profesjonalne, a także znakomite dla warsztatów samochodowych. Więcej informacji o magnesach znajdziesz w naszym przewodniku technologicznym.
Magnes RM R6 GOLF - 13000 Gs / N52 - rozdzielacz magnetyczny marki DHIT to jeden z najlepszych magnesów do klipsów antykradzieżowych, o mocy 12000 - 13000 GS. Dzięki swojej unikalnej konstrukcji w kształcie "walca" z wgłębieniem w centrum, magnes działa podwójnie na klipsy o różnych kształtach, umożliwiając ich szybkie i łatwe usunięcie. Magnes jest prosty w użyciu i intuicyjny, a jego montaż na blacie kasy jest bardzo prosty. Jest to nowoczesne i efektywne narzędzie polecane do handlu detalicznego, takich jak sklepy z odzieżą używaną. Idealne dla sprzedawców, którzy cenią sprawność i efektywność. Więcej informacji o magnesach do zdejmowania klipsów antykradzieżowych znajdziesz na stronie klipsy antykradzieżowe.
Nie, nie powinno się lutować ani spawać magnesów neodymowych. Wysoka temperatura generowane podczas lutowania lub spawania może rozmagnesować magnesy, co prowadzi do usunięcia właściwości magnetycznych. Dodatkowo, istnieje ryzyko wybuchu pożaru podczas procesu. Spalanie magnesów prowadzi do emisji toksycznych gazów, co stanowi zagrożenie dla zdrowia i może prowadzić do zatrucia oparami. Zamiast tego, należy stosować techniki obróbki magnesów, które nie wpływają na ich magnetyczność.
Oddzielanie mocnych magnesów neodymowych wymaga delikatności i wprawy. Najlepszym sposobem jest wykorzystanie narzędzi takich jak kliny lub specjalne narzędzia do magnesów.
Zacznij od zsuń jeden magnes w bok, zamiast odciągać wprost. Zabezpiecz magnesy, aby zapobiec ich niekontrolowanemu przyciągnięciu. Więcej informacji znajdziesz na stronie narzędzia separacyjne.
Do obróbki neodymowych magnesów stosuje się narzędzia diamentowe z intensywnym chłodzeniem wodnym. Precyzja i specjalistyczna wiedza są kluczowe. Więcej informacji znajdziesz na stronie narzędzia diamentowe.
Tak, łączenie magnesów może zwiększyć ich siłę przyciągania, ale tylko w określonych warunkach. Zwiększenie mocy ma swoje ograniczenia.

Zastosowania magnesów

Poznaj inspiracje i przykłady wykorzystania magnesów neodymowych w domu, przemyśle oraz w kreatywnych projektach.

Nasza oferta obejmuje szeroki wybór magnesów, które zaspokoją potrzeby zarówno klientów indywidualnych, jak i firm:

Rodzaje magnesów:
Magnesy neodymowe: najsilniejsze na rynku, idealne do zaawansowanych zastosowań.
Magnesy ferrytowe: ekonomiczne rozwiązanie do mniej wymagających projektów.
Magnesy gumowane: odporne na uszkodzenia i nadające się do delikatnych powierzchni.
Magnesy specjalistyczne: np. do czujników, separatorów magnetycznych czy uchwytów.
Magnesy o różnych kształtach: walce, kostki, pierścienie, a także niestandardowe formy na zamówienie.
Nie, zwykły magnes nie może skutecznie zamienić specjalistycznego separatora magnetycznego. Chociaż teoretycznie jest to możliwe, w rzeczywistości użycie zwykłego magnesu zamiast skomplikowanego separatora magnetycznego okaże się nieskuteczne. Separatory magnetyczne to zaawansowane urządzenia, które są przystosowywane do specyficznych warunków i warunków pracy, a także często wyposażone w systemy ułatwiające czyszczenie i elementy mocujące. W branżach takich jak przemysł spożywczy, gdzie istnieją specyficzne wymogi dotyczące oczyszczania produktów za pomocą pola magnetycznego, użycie pojedynczego magnesu zamiast separatora może nie tylko okazać się niewystarczające, ale także narazić na kary przy audycie przez audytorów.
Magnesy to niezwykle wszechstronne narzędzia, które znajdują zastosowanie w wielu dziedzinach życia i przemysłu:

Przykładowe zastosowania:
Dom: Organizacja narzędzi, mocowanie zdjęć, czy tworzenie zamknięć magnetycznych.
Biuro: Tablice magnetyczne, uchwyty do dokumentów, organizery.
Przemysł: Separacja metali, mocowanie elementów, silniki elektryczne.
Edukacja: Eksperymenty fizyczne, nauczanie zasad magnetyzmu.
Hobby i sztuka: Tworzenie magnesów dekoracyjnych, modelarstwo, projekty DIY.
Magnesy na lodówkę wykonane są głównie z arkuszy magnetycznych, które łatwo można przyciąć i udekorować. Popularnym materiałem jest także żywica epoksydowa, stosowana do uzyskania trwałych wykończeń. Plastelina pozwala tworzyć ręcznie robione magnesy, a papier fotograficzny sprawdza się przy tworzeniu magnesów z zdjęciami. Dodatkowo, w produkcji magnesów często wykorzystuje się kleje do mocowania elementów dekoracyjnych.
Magnesy neodymowe są szeroko stosowane w różnych dziedzinach, takich jak elektronika, przemysł motoryzacyjny, medycyna, rolnictwo i inne. Można je znaleźć m.in. w głośnikach, silnikach elektrycznych, magnesach stosowanych w leczeniu chorób, a nawet w magnesach stosowanych w rolnictwie do wyznaczania poleceń dla maszyn rolniczych.
Magnesy neodymowe znajdują zastosowanie w elektronice, medycynie i motoryzacji, takich jak głośniki, motory napędowe, a także magnetoterapia.
Magnesy neodymowe są szeroko wykorzystywane w przemyśle, elektronice i medycynie. Używane są w przetwornicach, turbinach wiatrowych i narzędziach chirurgicznych. Więcej przykładów znajdziesz na stronie zastosowania magnesów.
Magnesy przyczepiają się do lodówek ponieważ znaczna część lodówek ma metalowe powierzchnie. Metalowe powierzchnie lodówki są jako powierzchnie przyciągające magnesy, co pozwala magnesom przyciągać.
Jeśli szukasz silnego magnesu do pracy, polecamy modele z serii UMP, takie jak:
Magnes UMP 67x28 [M8+M10] F120 GOLD, idealny do pracy dzieci,
Magnes UMP 75x25 [M10x3] F200 GOLD, uniwersalny wybór z udźwigiem 290 kg,
Magnes UMP 94x28 [M10] F300 GOLD, przeznaczony dla profesjonalistów.
Więcej informacji znajdziesz na stronie jaki magnes do poszukiwań.
W pierwszej kolejności głównymi odbiorcami na magnesy są firmy wytwarzające urządzenia pomiarowe, elektroniczne, elektryczne, podmioty zajmujące się motoryzacją czy też produkujące różnego rodzaju maszyny przemysłowe. Siłę magnetyczną ceni też od dawna branża meblowa, oferująca odzież, szczególnie związana z odzieżą medyczną, firmy wytwarzające zamykania do galanterii oraz rzecz jasna marketing i reklama.
Tworzenie własnych magnesów na lodówkę jest proste. Potrzebujesz dowolnego magnesu, kleju i ozdobnej powierzchni (np. drewnianej figurki). Połączenie elementów klejem i gotowe!

Informacje techniczne o magnesach

Szczegółowe dane techniczne na temat magnesów neodymowych – od klas i powłok ochronnych po ich właściwości i zastosowania.

Magnesy neodymowe pracują w zakresie temperatur od -130°C do nawet 230°C, w zależności od zastosowanej klasy.
Siła oddziaływania dwóch biegunów magnetycznych to kluczowy aspekt działania magnesów, który można łatwo zaobserwować w praktyce:

Podstawowe zasady:
Bieguny przeciwne (N i S) przyciągają się, tworząc stabilne połączenie.
Bieguny te same (N i N lub S i S) odpychają się, powodując trudność w ich zbliżeniu.
Siła oddziaływania zależy od odległości między biegunami i mocy magnesów.
Pola magnetyczne mogą wpływać na przewodniki, a także na niektóre urządzenia elektroniczne, dlatego należy zachować ostrożność.
Ukierunkowane wykorzystanie biegunów magnetycznych pozwala na efektywne zastosowanie w technologiach, jak np. w silnikach elektrycznych czy separatorach.
Pierwsze udokumentowane badania laboratoryjne nad materiałami jakie można by było wykorzystać do wytwarzania silnych elementów magnetycznych miały miejsce w 1966 roku. Właśnie w tamtym okresie G. Hoffer i K. Strnat z Air Force Materials Laboratory w Dayton, rozpoczęli pracę nad materiałami magnetycznymi, wykonanymi z metali zaliczanych do ziem rzadkich. W początkowym okresie pierwsze stopy metali, jakie miały posłużyć do wytwarzania elementów magnetycznych o dużej mocy, były tworzone o żelazo, kobalt i lekkie lantanowce, do jakich można zaliczyć: prazeodym Pr, neodym Nd, cer Ce, samar Sm, lantan La i itr Y. Wymienione powyżej lantanowce wykazują nietypowe zdolności, takie jak możliwość silnego namagnesowania, ale problemem była niska temperatura Curie. Dzisiaj produkowane elementy magnetyczne o dużej sile w swoim składzie posiadają obok żelaza także domieszkę odpowiednio dobranych lantanowców, zapewniając im anizotropię magneto-krystaliczną na wysokim poziomie, a dodatkowo uzupełnia się ten skład o niewielką ilość kobaltu żeby podnieść poziom temperatury Curie. Pierwsze silne magnesy zostały opracowane na początku lat 70-tych wykorzystując samar w formie sproszkowanych ziaren wraz z kilkoma dodatkowymi pierwiastkami z rodziny lantanowców. Wymyślony został pierwszy, potężny magnes SmCo5. Produkcja opierała się na ukierunkowaniu kryształów sproszkowanego stopu przy udziale pola magnetycznego przy spiekaniu. Tworzenie wyprasek odbywało się w warunkach temperaturowych około 1120°C wraz z ostatecznym wyżarzaniem w temperaturze o 250°C niższej. Ostatnim etapem produkowania magnesu o dużej mocy było magnesowanie całości przy użyciu pola magnetycznego 2T. Dzięki temu procesowi temperatura Curie magnesów SmCo5 wyniosła około 745°C.
W okresie kiedy były projektowane kolejne mocne magnesy oparte o samar, na początku lat osiemdziesiątych odkryto interesujące magnetyczne cechy związku neodymu w połączeniu z żelazem i borem. Firma General Motors stworzyła w 1984 roku nowy związek o wzorze Nd2Fe14B, w proporcji ponad 70% żelaza, 15% neodymu, 6% boru. Przemysłowy proces tworzenia magnesów neodymowych o dużej mocy wykorzystuje dwie metody. W Japonii zakład Sumitomo, wchodzący w skład firmy Hitachi, tak samo jak procesie tworzenia magnesów na bazie samaru, stosował metodę spiekania odpowiednio przygotowanego proszku, co pozwalało uzyskać magnes o pełnej gęstości.

W Ameryce magnesy neodymowe o dużej mocy wytwarzano w firmie General Motors sposobem dynamicznego schładzania upłynnionej mieszaniny proszków. Dlaczego użycie boru, neodymu i żelaza zapewniło dużo większą wydajność? Wykorzystanie neodymu okazało się o wiele tańsze, niż związków samaru, a poza tym neodym ma znacznie lepsze parametry magnetyczne. Ale jego temperatura Curie była zdecydowanie za niska, z takich też powodów postanowiono podnieść tę temperaturę do 530°C. Taki poziom otrzymano przez dodatek do składu magnesu neodymowego boru. Poza tym można również w dowolny sposób regulować parametry magnetyczne, poprzez wprowadzenie do stopów dodatkowych pierwiastków, takich jak gal Ga, miedź Cu, niob Nb oraz glin Al.

Neodymowe magnesy wyposażane są też w warstwy ochronne ochraniające przed rdzewieniem i zabezpieczające przed oddziaływaniem niekorzystnych warunków pogodowych. Wykonuje się to poprzez dodanie cienkiej warstwy miedzianej lub niklowej np. w w wykorzystywanych do poszukiwań uchwytach, czyli mocnych magnesach stosowanych do przeszukiwania dna jezior, rzek i mórz. Opracowywane są również nowocześniejsze rodzaje magnesów, a dzięki ciągłym badaniom w metalurgii, powstają coraz to nowe łączenia metali cechujące się zwiększoną koercją, jak również magnesy dysponujące znacznie wyższą temperaturą Curie i możliwości namagnesowania stopów, większej niż 1,6T.
Magnesy neodymowe to obecnie najpotężniejsze magnesy, jakie udało się do tej pory stworzyć. Blisko 30 lat temu w dublińskim instytucie Trinity College naukowiec Michael Coey wymyślił nieznany dotychczas magnetyczny stop wzorze chemicznym Sm2Fe17N2. Jego proces wytworzenia był realizowany w syntezie rozdrobionego żelaza i samaru, które podczas prasowania w silnym polu magnetycznym wraz z nowym składnikiem – azotem, osiągnęły zakres temperatury Curie wynoszący 470°C i namagnesowanie w okolicach 0,9T. Nie jest to wynik zbliżony do poziomu magnesu neodymowego, ale nowo opracowany skład samaru znacząco przewyższał pierwsze z magnesów wykorzystujących ten pierwiastek. Końcówka lat dziewięćdziesiątych przyniosła coraz to nowe pomysły w dziedzinie mocnych magnesów oraz metod ich tworzenia.
Badacze opracowali materiał i strukturze nano-krystalicznej, składający się z ziaren o średnicy mniejszej niż 100 nm. Ziarna, które zostały odkryte nano-krystaliczne, w przeciwieństwie do struktur monokrystalicznych oddzielone są od siebie o wiele większymi granicami o dużo większej mocy powierzchniowej i mniej uporządkowanej strukturze wewnętrznej. Poprzez zastosowanie, na etapie produkcji pierwiastków z grupy ziem rzadkich w połączeniu z domieszką żelaza, cechują się remanencją magnetyczną na wysokim poziomie. Takie doskonałe magnetyczne właściwości wynikają również z jednej istotnej rzeczy, to znaczy połączenia magnetycznych momentów żelaza oraz neodymu. Pozwala to na doskonałe magnesowanie neodymowych magnesów.
Aktualnie magnesy neodymowe są wytwarzane głównie w krajach azjatyckich. Wiodącym wytwórcą oraz dystrybutorem tego typu wyrobów są Chiny, z uwagi na kontrolę większości złóż pierwiastków ziem rzadkich na świecie. W przemysłowej produkcji magnesów wykorzystuje się głównie dwa rodzaje związków: Sm2Fe17N2 oraz Nd2Fe14B. Są to magnesy neodymowe oraz magnesy posiadające strukturę nano krystaliczną, cechujące się nie tylko najwyższym stopniem namagnesowania, ale również dużą remanencją magnetyczną. Zastosowanie magnesów o dużej mocy jest naprawdę bardzo szerokie. Głównymi typami odbiorców zostały przedsiębiorstwa produkcyjne, projektujące sprzęt elektryczny i elektroniczny, szczególnie firmy zajmujące się motoryzacją, wykorzystujące wydajne silniki elektryczne i hybrydowe. Do produkcji silników tego typu stosuje się magnesy neodymowe ze stopu z pierwiastkami zmniejszającymi spadki wydajności magnesów przy wysokiej temperaturze na przykład takimi jak Terb (Tb) czy dysproz (Dy) . Dzięki użyciu tych pierwiastków, poprawiono w znacznym stopniu koercję magnetyczną i ogólną wydajność silnych magnesów wykorzystywanych w sprzęcie elektrycznym o większej mocy. Na terenie Stanów Zjednoczonych od kilkudziesięciu lat prowadzone są naukowe badania przez specjalnie do tego celu powołany Instytut Rare Earth Alternatives in Critical Technologies (REACT), zajmujący się opracowywaniem alternatywnych stopów i materiałów. W 2011 roku ARPA-E desygnowała blisko 32 miliony dolarów na wspieranie projektów w ramach programu Rare-Earth Substitute, to znaczy możliwości opracowania substytutów metali ziem rzadkich jako zastępstwo dla pierwiastków występujących naturalnie, kontrolowanych przez rząd Chin.

Wytwarzanie neodymowych magnesów oparte zostało na dwóch technologiach. W samej Japonii używana jest metoda spiekania mieszanin proszków, a na terenie USA popularność zyskała metoda oparta na szybkim chłodzeniu. W zależności od oczekiwań i potrzeb, magnesy neodymowe można wytwarzać poprzez zastosowanie innych pierwiastków, między innymi aluminium, galu albo miedzi. Dzięki takim połączeniom da się w znacznym stopniu korygować właściwości magnetyczne magnesu, jego wytrzymałość oraz możliwość pracy w wysokich temperaturach. Można nawet sprawić, że magnes będzie odporny na niekorzystne atmosferyczne warunki, na przykład wodę, powodującą korozję. Za to systematyczne doskonalenie metalurgii proszków doprowadziło do uzyskania różnego rodzaju stopów, które w znaczący sposób wpłynęły na zwiększenie tak zwanej temperatury Curie. Wykonany nowoczesną metodą produkcyjną magnes z neodymu, uzyskuje poziom namagnesowania przekraczający 1,6T, czyli o wiele wyższe chociażby od pola emitowanego przez Ziemię.
Magnes neodymowy to jeden z najmocniejszych magnesów stałych dostępnych na rynku. Jego wyjątkowo silne pole magnetyczne wynika z połączenia żelaza, neodymu i boru w odpowiedniej proporcji w celu uzyskania tetragonalnej struktury krystalicznej związku Nd2Fe14B. Taki skład stopu daje niespotykane wcześniej własności magnetyczne, w tym wyjątkowo wysoką anizotropię magnetokrystaliczną.
Magnesy neodymowe często produkowane są w formie spieków, ale istnieje również możliwość produkcji magnesów neodymowych jako tzw. magnesy wiązane, używając jako spoiwa tworzyw sztucznych lub żywic.
Magnesy neodymowe to spiek wykonany z żelaza, boru, neodymu i innych dodatków. Proces produkcji zaczyna się od dobrania odpowiednich ilości każdego z pierwiastków, które zostają stopione, a następnie odlane. Powstałe arkusze zostają kruszone metodą wodorową, a potem mielone na proszek. Otrzymany w ten sposób proszek jest poddawany procesowi zagęszczania. Materiał zostaje uformowany metodą pseudo-izostatyczną pod dużym ciśnieniem, co umożliwia uzyskanie dużego stopnia gęstości i jednorodności. W czasie procesu formowania, materiał zostaje namagnesowany przy użyciu pola magnetycznego, które określa kierunek magnesowania, jeśli produkowane są magnesy anizotropowe, lub bez użycia pola magnetycznego, jeśli potrzebne są magnesy izotropowe. Następnie, kształtki są spiekane, a po tym zabiegu przechodzą obróbce mechanicznej i powierzchniowej (w tym chronione są warstwami ochronnymi). Na koniec, gotowy produkt zostaje namagnesowany w magneśnicy, a finalnie staje się magnesem.
Magnesy z pierwiastkami ziem rzadkich to magnesy, które zawierają przynajmniej w jakiejś części metale nazywane pierwiastkami ziem rzadkich. Do tej grupy pierwiastków zaliczamy: skand, itr, lantan, cer, prazeodym, neodym, promet, samar, europ, gadolin, terb, dysproz, holm, erb, tul, iterb i lutet. Najbardziej znane z tych pierwiastków dla każdego użytkownika magnesów to oczywiście neodym, który jest wykorzystywany do produkcji magnesów NdFeB, oraz samar, który jest wykorzystywany do produkcji magnesów SmCo. Pierwiastki ziem rzadkich wcale nie występują w małych ilościach w skorupie ziemskiej. Tak naprawdę występują dosyć obficie, ale zazwyczaj ich złoża są rozproszone i skąpe, co uniemożliwia opłacalne ich wydobycie. W związku z tym, zostały nazwane „pierwiastkami ziem rzadkich”.
Oczywiście najsilniejszy będzie N52 magnes). Jednocześnie jednak, takie materiały są dużo droższe od standardowych. Wyższy magnes będzie działał na większą odległość, linie sił pola magnetycznego będą wychodzić z płaszczyzny bieguna strzeliście do góry i istnieje szansa na przyciągnięcie elementu z żelaza lub innego magnesu z dalszej odległości. Natomiast płaski magnes w praktyce będzie miał większy udźwig, będzie w stanie przytrzymać i podnieść elementy o większej powierzchni i gabarytach.
Oznaczenia stosowane dla neodymów obejmują cyfry i litery, gdzie symbole literowe jak M ("medium"), H ("high"), SH ("super high"), UH ("ultra high"), EH ("extra high") odnoszą się do wartości koercji magnesu na utratę magnetyzmu w wyniku wysokiej temperatury lub oddziaływania przeciwnego pola magnetycznego, a numery jak 35, 38, 42, 45, 48, 50, 52 wskazują na gęstość energii magnetycznej magnesu wyrażoną w MGsOe. Na przykład, symbol N52SH wskazuje, że jest to magnes neodymowy z gęstością energii osiągającą 52 Mega Gauss Oerstedach - (MGsOe) i ma bardzo wysoką wartość koercji (SH oznacza "super high").
Magnesy neodymowe zazwyczaj są dostępne w bardzo nieskomplikowanych kształtach takich jak: walec, a także pierścień czyli walce neodymowe z otworem. Potocznie mówimy wtedy o magnesach walcowych ale trzeba też dodać, że magnesy zarówno płytkowe jak i pierścieniowe mogą być wykonywane ze specjalnie fazowanymi otworami ułatwiającymi schowanie, zlicowanie z powierzchnią magnesu łba śruby lub wkrętu. Istnieje także możliwość wykonania magnesów neodymowych w kształcie kuli oraz tzw. magnesów segmentowych (łukowych) będących wycinkami pierścienia. Można również zamówić magnesy w kształcie np. trapezu lub innych figur geometrycznych, pod warunkiem, że da się taki kształt wyciąć za pomocą elektrodrążarki i nie pokruszyć przy tej operacji kształtki magnesu. Kruchość magnesów neodymowych jest cechą ograniczającą wykonywanie skomplikowanych kształtów, przykładowo, nie da się wykonać gwintu bezpośrednio w samym magnesie
Magnesy neodymowe wytwarzane ze związku Nd2Fe14B to spiek żelaza, boru i neodymu. W rzeczywistości w skład magnesu neodymowego wchodzi tylko około 30% neodymu, dzięki swojej budowie atomowej magnesy te są tak potężne.
Do namagnesowania magnesu stosuje się urządzenia magnetyczne, czyli maszyny, w których możliwe jest wytworzenie odpowiednio dużego stałego pola elektromagnetycznego. Po zwiększeniu pola (natężenie prądu) do punktu zwanego punktem nasycenia, dalsze jego zwiększanie nie ma sensu, gdyż nie zwiększa to indukcji magnetycznej magnesu. Następnie wartość zewnętrznego pola jest zmniejszana do zera. Właściwości magnesów neodymowych, wykonanych z materiałów magnetycznie twardych sprawiają, że po wyłączeniu pola wartość namagnesowania nie spada do zera tylko ustala się w punkcie Br, czyli indukcji remanencji, zwanej także punktem pozostałości magnetycznej (namagnesowaniem resztkowym). Proces magnesowania najlepiej opisuje pierwsza ćwiartka pętli histerezy magnetycznej.
Tak, istnieje kilka sposobów na rozmagnesowanie magnesów z neodymu. Najprostszym z nich jest ogrzanie magnesu najpierw powyżej zdefiniowanej dla materiału magnetycznego maksymalnej temperatury pracy, zazwyczaj jest to 80 stopni C - co spowoduje częściowe odmagnesowanie, a później rozgrzanie powyżej temperatury Curie, czyli takiej powyżej której ferromagnetyk staje się paramagnetykiem, będzie to skutkowało całkowitym rozmagnesowaniem. Innymi sposobami na rozmagnesowanie magnesów z neodymu są: działanie odpowiednio dużym stałym i przeciwnym polem magnetycznym lub poddanie magnesu zanikającym i przemiennym polem magnetycznym.
Magnes neodymowy jest powszechnie wykorzystywany w wielu urządzeniach elektrycznych: i miernikach, instalacjach alarmowych, telewizorach, dronach. Do głównych gałęzi w których wykorzystuje się magnesy neodymowe zaliczamy: medyczny.
Najważniejszym kryterium w doborze magnesów wykonanych z neodymu będzie jego przeznaczenie. Należy wziąć pod uwagę warunki temperaturowe, pogodę i wreszcie siłę magnetyczną z jaką ma działać magnes. Siła działania magnesów neodymowych często podawana jest jako udźwig w kilogramach. Należy wziąć pod uwagę, iż jest to wartość mierzona w laboratoriach, w idealnych warunkach, przy idealnym kontakcie magnesu z podłożem ferromagnetycznym i co istotne kierunek działania tej siły jest prostopadły do powierzchni kontaktu magnesu z podłożem. W razie wątpliwości proszę kontaktować się z doradcami firmy Dhit sp. z o.o. telefon w zakładce kontakt.
Magnes z neodymu wykazuje silne oddziaływanie przede wszystkim żelazo i wszelkie stopy z jego domieszką oraz metale: gadolin, nikiel, erb, kobalt i dysproz. To, czy dany element zostanie łatwiej czy też trudniej przyciągnięty przez magnes, zależy też od kształtu tego elementu. W długim elemencie, np. w żelaznym gwoździu, kiedy zostanie on nasycony polem magnetycznym z magnesu stałego, szybko ustalą się miejsca biegunów magnetycznych, t.j. na jednym końcu gwoździa będzie „N”, a na drugim „S”. Jeżeli ten sam gwóźdź przetopimy i uformujemy z niego kulę, to okaże się, szczególnie jeżeli kula będzie w ruchu, że będzie ją trudniej wychwycić za pomocą pola magnetycznego.
Nie, nie podwoi się.
Gęstość strumienia magnetycznego jest ilością strumienia magnetycznego w jednostce powierzchni. Chociaż gęstość strumienia stanie się nieco silniejsza, gdy dwa magnesy zostaną umieszczone pionowo jeden na drugim, ponieważ powierzchnia pozostanie taka sama, nie będzie znaczącej różnicy. Na przykład, jeśli dwa magnesy o rozmiarze MW 10mm x 10mm zostaną umieszczone jeden na drugim, gęstość strumienia magnetycznego będzie prawie taka sama jak dla magnesu o rozmiarze MW 10x10 mm.
Magnetyzm jest trwały. Ścisłe mówiąc, magnetyzm osłabia się przez lata, jednak demagnetyzacja jest tak niewielka, że nawet po kilkudziesięciu latach nie odczuwa się znacznego osłabienia. Dlatego magnesy neodymowe są powszechnie uważane za niewrażliwe na demagnetyzację i nazywane magnesami trwałymi. Demagnetyzacja częściej występuje z powodu zmian temperatury i obciążenia odpychającego, a nie ze względu na upływ czasu. Magnesy z materiału Alnico mogą wymagać ponownego namagnesowania, ponieważ łatwo ulegają demagnetyzacji z powodu obciążenia odpychającego.
Magnez to pierwiastek chemiczny o symbolu Mg, znany ze swoich wyjątkowych właściwości, takich jak lekkość i odporność na korozję. W kontekście oddziaływania z magnesami, sytuacja jest bardziej złożona niż w przypadku materiałów ferromagnetycznych, takich jak żelazo czy nikiel.

Kluczowe informacje:
Magnez jest paramagnetyczny, co oznacza, że reaguje na pole magnetyczne, ale siła przyciągania jest bardzo słaba.
W warunkach normalnych magnesy nie przyciągają magnezu w zauważalny sposób, ponieważ jego właściwości paramagnetyczne są niewystarczające do wytworzenia znaczącej siły.
Aby zaobserwować efekt paramagnetyzmu magnezu, potrzebne jest bardzo silne pole magnetyczne i specjalistyczny sprzęt.
Magnez różni się od materiałów takich jak żelazo, kobalt czy nikiel, które są ferromagnetyczne i silnie reagują na magnesy.
Ze względu na swoje właściwości, magnez znajduje zastosowanie w wielu gałęziach przemysłu, jednak nie jest używany jako materiał magnetyczny.
Magnesy są nieodzownym elementem wielu urządzeń i technologii, ale jak właściwie powstają? Proces ich tworzenia zależy od rodzaju magnesu, który chcemy uzyskać – magnesów trwałych, elektromagnesów czy magnesów tymczasowych. Oto przegląd kluczowych etapów produkcji.

Proces tworzenia magnesu:
Wybór materiału: Magnesy trwałe powstają z materiałów ferromagnetycznych, takich jak żelazo, nikiel, kobalt czy stopy neodymu, żelaza i boru (NdFeB).
Kształtowanie: Materiał jest formowany w pożądany kształt poprzez odlewanie, spiekanie lub prasowanie proszków magnetycznych.
Magnetyzacja: Gotowy element jest poddawany działaniu silnego pola magnetycznego, co powoduje uporządkowanie domen magnetycznych w materiale i nadaje mu właściwości magnetyczne.
Obróbka końcowa: W zależności od przeznaczenia, magnesy mogą być dodatkowo szlifowane, pokrywane ochronną powłoką lub wykańczane w inny sposób.
Kontrola jakości: Każdy magnes jest testowany pod kątem jego właściwości magnetycznych i wytrzymałości, aby spełniał wymagania użytkowe.
Elektromagnesy: W przypadku elektromagnesów proces polega na nawinięciu przewodnika wokół rdzenia z materiału ferromagnetycznego i podłączeniu do źródła prądu elektrycznego.
Terapia polem magnetycznym jest alternatywną metodą leczenia, która zyskuje popularność, choć wciąż budzi kontrowersje. Polega na stosowaniu magnesów lub urządzeń generujących pole magnetyczne w celu poprawy zdrowia.

Kluczowe fakty:
Terapia magnetyczna jest stosowana przede wszystkim w leczeniu bólu, regeneracji tkanek i poprawie krążenia krwi.
Istnieją badania wskazujące, że pole magnetyczne o niskiej częstotliwości może wspierać leczenie stanów zapalnych, złamań kości czy zespołu cieśni nadgarstka.
Skuteczność terapii magnetycznej nie została jednoznacznie potwierdzona naukowo, a opinie ekspertów są podzielone.
Terapia ta jest zazwyczaj bezpieczna, ale może nie być odpowiednia dla osób z rozrusznikiem serca, metalowymi implantami lub w ciąży.
Zawsze konsultuj się z lekarzem przed rozpoczęciem terapii polem magnetycznym, szczególnie w przypadku poważnych schorzeń.
Magnesy neodymowe to najnowocześniejsze i najpotężniejsze magnesy trwałe, które różnią się od tradycyjnych magnesów pod wieloma względami.

Różnice między magnesami:
Siła magnetyczna: Magnesy neodymowe (NdFeB) są kilkukrotnie silniejsze niż tradycyjne magnesy ceramiczne lub ferrytowe.
Skład: Wykonane z neodymu, żelaza i boru, podczas gdy magnesy tradycyjne są najczęściej ferrytowe.
Rozmiar: Magnesy neodymowe mogą być bardzo małe, a jednocześnie niezwykle silne.
Zastosowanie: Neodymowe magnesy są stosowane w nowoczesnych technologiach, takich jak silniki elektryczne, dyski twarde czy urządzenia medyczne.
Odporność: Magnesy neodymowe są bardziej kruche i mniej odporne na wysoką temperaturę niż ferrytowe, co wymaga stosowania powłok ochronnych.
Najmocniejsze magnesy dostępne na rynku to magnesy neodymowe (NdFeB). Są one szeroko stosowane w technologiach wymagających dużej siły magnetycznej.

Dlaczego magnesy neodymowe są najmocniejsze?
Wysoka siła magnetyczna: Są zdolne do generowania bardzo silnego pola magnetycznego, nawet w małych rozmiarach.
Nowoczesne technologie: Stosowane w urządzeniach takich jak silniki elektryczne, generatory wiatrowe i głośniki.
Kompaktowość: Dzięki swojej sile mogą zastąpić większe i słabsze magnesy.
Alternatywa: Innym rodzajem silnych magnesów są magnesy samaro-kobaltowe (SmCo), które są bardziej odporne na wysokie temperatury, ale mniej powszechne i droższe.
Magnesy anizotropowe są formowane w obecności zewnętrznego pola magnetycznego, które kieruje tworzącym magnes wzdłuż linii sił pola. Magnesy te są namagnesowane w jednym kierunku, co sprawia, że są silniejsze. Z kolei magnesy izotropowe są formowane bez zewnętrznego pola, a ich magnetyzacja ma miejsce tylko na końcu procesu. Są one słabsze, ale mogą być namagnesowane w dowolnym kierunku, co pozwala na tworzenie magnesów wielobiegunowych.
Więcej informacji o rodzajach materiałów magnetycznych znajdziesz na stronie technologia.
Magnesy neodymowe to jedne z najmocniejszych magnesów stałych. Istnieją trzy podstawowe parametry, które wpływają na ich właściwości: remanencja, koercja (Hc), oraz maksymalna energia produkcyjna (BHmax).

Remanencja (Br) to maksymalna indukcja magnetyczna, którą magnes może utrzymać po usunięciu pola magnetycznego. Wartość Br dla magnesów neodymowych mieści się w zakresie od 1,1 do 1,4 T.

Koercja (Hc) to pole magnetyczne potrzebne do wymazania magnetyzacji remanentnej. Koercja magnesów neodymowych wynosi od 800 do 2000 kA/m.

Maksymalna energia produkcyjna (BHmax) to miara energii, jaką magnes może dostarczyć na jednostkę objętości. Dla magnesów neodymowych BHmax wynosi zwykle od 200 do 400 kJ/m3.

Aby zmierzyć te parametry, wykorzystuje się specjalistyczne urządzenia jak gaussmetry, teslametry i magnetometry. Więcej informacji znajdziesz na stronie technologia.
Gęstość magnesu neodymowego to ważny parametr techniczny, który określa jego masę w stosunku do objętości. Im większa gęstość, tym cięższy magnes neodymowy.

Poniżej przedstawiamy wartości gęstości dla różnych materiałów magnetycznych:
Woda: 1.0 (referencyjna wartość)
Magnes ferrytowy: około 4.8
Magnes neodymowy: około 7.5
Magnes Alnico: około 7.3
Żelazo: 7.9

Magnesy neodymowe są cięższe niż inne materiały magnetyczne, co czyni je idealnymi do zastosowań wymagających dużej mocy magnetycznej.
Magnesy neodymowe, znane również jako magnesy neodymowo-żelazoborowe, zostały wynalezione przez zespół naukowców z Japonii w 1984 roku. W skład zespołu wchodzili Shunichi Miyazawa, Kiyoshi Watanabe oraz Jiro Fujita. Odkrycie miało miejsce w Instytucie Badań nad Ziemiami Rzadkimi w Japonii.

Magnesy neodymowe stały się przełomem technologicznym ze względu na swoją wyjątkową magnetyczność oraz stosunkowo niewielką masę w porównaniu do tradycyjnych magnesów. Dzięki temu znalazły szerokie zastosowanie w wielu branżach, w tym elektronice, motoryzacji i medycynie.
Nie ma materiałów, które mogą całkowicie zablokować pole magnetyczne, ale są materiały, które mogą znacznie zmniejszyć jego wpływ. Takie materiały nazywają się ekranami magnetycznymi.

Najczęściej wykorzystywanym materiałem do ekranowania jest żelazo, które ma bardzo wysoką przewodność magnetyczną. Inne materiały, takie jak stal nierdzewna, kobalt, nikiel i miedź, również mogą działać jako ekrany magnetyczne, ale ich skuteczność jest mniejsza.

Ekranowanie polega na umieszczeniu materiału o wysokiej przewodności magnetycznej pomiędzy źródłem pola a chronionym obszarem. Takie materiały tworzą tzw. klatkę Faradaya, która zmienia kierunek linii sił pola magnetycznego i zmniejsza ich wpływ na chronioną przestrzeń.
Tak, każdy magnes ma co najmniej dwa bieguny magnetyczne. Współczesne magnesy mogą być magnesowane wielobiegunowo, co oznacza, że mają więcej niż jedną parę biegunów. Techniczne oznaczenie takich magnesów to 4-pole, które oznaczają odpowiednio jedną, dwie lub trzy pary biegunów.

Magnesy izotropowe, formowane bez pola magnetycznego, mogą posiadać wielobiegunową strukturę. Magnesy anizotropowe, które są formowane w silnym polu magnetycznym, mogą być również magnesowane wielobiegunowo, ale tylko w określonym kierunku.

Każdy magnes ma zawsze parzystą liczbę biegunów, co jest kluczowe dla jego działania.
Magnesy różnią się odpornością na wysoką temperaturę. Oto zakresy temperatur dla różnych typów magnesów:
Magnesy ferrytowe i samarowo-kobaltowe - od -60°C do 250°C.
Magnesy neodymowe - w zależności od rodzaju, od -130°C do 230°C.
Magnesy alnico - wytrzymają temperatury do 550°C.

Wszystkie magnesy dobrze znoszą niskie temperatury, jednak wyższe temperatury mogą prowadzić do rozmagnesowania. Należy pamiętać, że przegrzanie magnesów może skutkować utratą siły przyciągania i rozmagnesowaniem.
Separator magnetyczny to skomplikowane urządzenie składające się z wielu magnesów, które działają w tzw. obwodach magnetycznych. Te obwody zwiększają natężenie pola magnetycznego w wybranych obszarach. Chociaż istnieje możliwość zastosowania magnesu zamiast separatora, będzie to niewydajne. Magnesy bez dodatkowych elementów są mniej efektywne. Separator magnetyczny jest dostosowany do wymagań i zapewnia wysoką skuteczność. Więcej informacji o separatorach magnetycznych znajdziesz na stronie separator magnetyczny.
Tak, możliwe jest wykonanie jednostronnego wałka magnetycznego, który działa jako filtr w pompie ciepła. Wałki magnetyczne są wykonane z magnesu neodymowego umieszczonego w stalowej rurze, co umożliwia przepływ płynu tylko w jednym kierunku. Tego typu wałki są szeroko stosowane w systemach grzewczych, pompach ciepła i innych urządzeniach przemysłowych do usuwania zanieczyszczeń magnetycznych.

Więcej informacji o separatorach magnetycznych znajdziesz na stronie separator magnetyczny.
Magnesy neodymowe przyciągają materiały ferromagnetyczne takie jak żelazo (Fe), nikiel (Ni), kobalt (Co). Żelazo, nikiel i kobalt są silnie przyciągane przez magnesy neodymowe. Stal również jest silnie przyciągana przez magnesy, ponieważ zawiera żelazo, co daje jej właściwości ferromagnetyczne. Materiały, które nie są przyciągane przez magnesy to stal nierdzewna 304 oraz stal kwasoodporna 316L, znana również jako stal dentystyczna.
Symbole magnesów neodymowych obejmują litery i cyfry, które określają właściwości magnetyczne magnesu. Litery, takie jak M - "medium", H - "high", SH - "super high", UH - "ultra high", EH - "extra high" wskazują na odporność magnesu na rozmagnesowanie. Natomiast cyfry, takie jak N35, N42, N52, określają poziom energii magnetycznej, wyrażoną w MGsOe. Na przykład, N42SH oznacza magnes o gęstości energii 42 MGsOe oraz wysokiej odporności na rozmagnesowanie. Więcej informacji o magnesach i ich oznaczeniach znajdziesz w naszym poradniku technologicznym.
Magnesy neodymowe nie oddziałują na czyste złoto, aluminium czy miedź. Te metale działają odwrotnie w obecności zmiennego pola magnetycznego przez zjawisko prądów wirowych. Jednak magnesy neodymowe silnie przyciągają pierwiastki takie jak żelazo, nikiel, kobalt. Więcej informacji o magnesach i ich właściwościach znajdziesz na stronie technologia.
Magnes stały, znany również jako magnes trwały, to materiał o dużej koercji, który po namagnesowaniu utrzymuje swoje właściwości magnetyczne. Po zastosowaniu odpowiedniego pola magnetycznego, domeny magnetyczne w materiale ustawiają się w jednym kierunku i pozostają w tej pozycji, nawet po wyłączeniu pola. Magnesy stałe charakteryzują się koercją HcJ wynoszącą co najmniej 24 kA/m, a większa wartość koercji, tym większa odporność na odmagnesowanie. Takie magnesy są stosowane m.in. w urządzeniach elektrycznych, gdzie odporność na pole magnetyczne jest kluczowa. Więcej informacji o magnesach znajdziesz na stronie technologia.
Magnes przyciąga żelazo, ponieważ żelazo jest jednym z nielicznych ferromagnetyków, który posiada własne pole magnetyczne. Ferromagnetyki takie jak żelazo, inne metale ferromagnetyczne, posiadają domeny magnetyczne, które kierują swoje pola w jednym kierunku. Kiedy magnes zbliża się do żelaza, jego pole magnetyczne wzmacnia pól magnetycznych żelaza, co zwiększa siłę przyciągania.

Domeny magnetyczne w materiałach ferromagnetycznych to małe fragmenty, w których pole magnetyczne jest skierowane w jednym, stałym kierunku. Kiedy magnes jest zbliżany, wzmacnia pole magnetyczne w wybranych domenach, co powoduje, że reszta domen również układa się w kierunku pola magnesu, w wyniku czego żelazo jest przyciągane przez magnes.
Nieprawda, oba bieguny N i S magnesu posiadają identyczną siłę.
Więcej o biegunach znajdziesz na stronie enes magnesu.
Magnesy są często stosowane w naprawach karoserii. Metoda ta polega na połączeniu dużego magnesu i kuli, co pozwala na usuwanie wgnieceń bez lakierowania. Szczegółowe informacje na stronie technologia.
Magnesy neodymowe są trwałe, tracąc mniej niż 1% na dekadę, o ile nie są eksponowane na wysokie temperatury lub wilgoć. Przechowywanie w suchym środowisku wydłuża ich żywotność.
Siła poślizgu magnesu to ilość energii potrzebna do poruszenia magnesu wzdłuż powierzchni. Zależy ona od materiału powierzchni oraz mocy magnesu. Sprawdź kalkulator.
Magnesy przyciągają się, gdy ich przeciwne bieguny są skierowane ku sobie. Jest to kluczowe prawo magnetyzmu, które powoduje przyciąganie biegunów o przeciwnych polaryzacjach.
Aby zwiększyć siłę magnesu, należy utrzymywać magnes w odpowiednich warunkach, zastosować zewnętrzne pole magnetyczne oraz korzystać z odpowiednich konfiguracji magnetycznych.
Magnesy neodymowe mogą utrzymać swoją siłę magnetyczną przez wiele lat, o ile są odpowiednio użytkowane.
Magnesy neodymowe tracą moc bardzo powoli. Strata wynosi mniej niż 1% na 10 lat, o ile są przechowywane w odpowiednich warunkach. Więcej informacji znajdziesz w dziale trwałość magnesów.
Magnesy neodymowe są klasyfikowane w PKWiU w kategorii 26.80.99, który obejmuje wyroby magnetyczne. Szczegółowe informacje znajdziesz w sekcji PKWiU magnesów.
"Magnesowanie przez grubość" odnosi się do procesu, w którym pole magnetyczne jest skoncentrowane przez najgrubszą warstwę magnesu, w odróżnieniu od długość czy szerokość. Tego rodzaju magnesy są często wykorzystywane w aplikacjach technologicznych, gdy konieczne jest specyficzna orientacja pola magnetycznego.
Blokowanie pola magnetycznego wymaga stosowania materiałów takich jak mu-metal, które pochłaniają linie sił pola. Nie ma materiału, który całkowicie blokuje pole magnetyczne, ale pewne substancje mogą zmniejszyć efektywność. Więcej informacji znajdziesz na stronie materiały do blokowania pola.
Magnesy neodymowe są zabezpieczane, aby zapobiec korozji, zwłaszcza w wilgotnych warunkach. Najpopularniejsze powłoki to nikiel i chrom, które zwiększają trwałość magnesów. Dowiedz się więcej o powłokach na stronie powłoki magnesów.
Magnesy odpychają się, gdy ich jednakowe bieguny są ustawione do siebie. To zjawisko wynika z zasad elektromagnetyzmu. Kiedy północny biegun jednego magnesu jest skierowany w stronę północnego bieguna drugiego (lub południowy w stronę bieguna południowego), magnesy te się odpychają. Jest to podstawowe prawo magnetyzmu.
Magnesy neodymowe to związki składające się z neodymu, boru oraz żelaza. Ich taryfa celna to 8505199089. Oznacza to, że są one klasyfikowane jako magnesy w międzynarodowym systemie kodowania celnego. Warto podkreślić, że produkcja tych magnesów jest globalnie rozpowszechniona, przy czym Chiny są głównym producentem. Magnesy neodymowe są także wytwarzane w krajach takich jak Stany Zjednoczone, Rosja i inne, aby sprostać rosnącemu popytowi na te wyjątkowo silne magnesy. Przed importem warto zweryfikować stawki celne w systemach ISZTAR lub TARIC oraz upewnić się, czy produkt spełnia wymogi certyfikacyjne (np. CE, RoHS), zwłaszcza jeśli ma kontakt z żywnością lub skórą.
Bieguny magnesu da się rozpoznać za pomocą kompasu lub magnetometru. Korzystając z kompasu, igła wskazuje biegun N i S. Więcej informacji znajdziesz w dziale pole magnetyczne.

Bezpieczeństwo

Zasady bezpiecznego użytkowania magnesów, w tym informacje o potencjalnych zagrożeniach oraz odpowiedzialnym obchodzeniu się z magnesami.

Tak, magnesy neodymowe są bezpieczne dla zdrowia, jeśli są odpowiednio użytkowane. Należy jednak pamiętać, że niektóre magnesy neodymowe są bardzo silne i mogą być niebezpieczne, jeśli są połykane lub wchodzą w kontakt z ciałem w nieodpowiedni sposób.
Temperatura wpływa na właściwości magnetyczne magnesów. Magnesy neodymowe mogą osłabnąć przy wysokich temperaturach. Zakres pracy wynosi od -130°C do nawet 230°C w zależności od rodzaju magnesu.
Magnesy neodymowe chronione powłoką dla zwiększenia trwałości. Najczęściej stosuje się powłoki niklowo-miedziowe, które zapewniają ochronę. Więcej w dziale technologia.
Magnesy neodymowe nie są całkowicie odporne przez wilgoć. Długotrwała ekspozycja z wodą może prowadzić do utleniania, jeśli magnes ma odpowiednią warstwę zabezpieczającą. Więcej o zabezpieczaniu magnesów przed wilgocią znajdziesz w dziale ochrona przed wilgocią.
Magnesy neodymowe składają się głównie z neodymu, żelaza i boru. Jeśli nie są zabezpieczone, mogą korodować, szczególnie w wilgotnym środowisku. Aby temu zapobiec, większość magnesów neodymowych otrzymuje specjalną warstwę ochronną, najczęściej niklową, co chroni je przed utlenianiem. Plastikowe i złote powłoki są mniej powszechne, ale również skuteczne.
Magnesy neodymowe są niezwykle silne, znacznie przewyższając inne rodzaje magnesów. Ich siła może powodować zagrożenia, jeśli nie zachowamy ostrożności. W większych rozmiarach, mogą prowadzić do poważnych obrażeń, jeśli części ciała zostaną uwięzione między nimi. Zawsze używaj sprzętu ochronnego, aby uniknąć takich sytuacji. Obejrzyj ten film, aby zobaczyć przykłady: YouTube.
Magnesy mogą uszkodzić działanie telefonów komórkowych, szczególnie w przypadku silnych magnesów neodymowych. Oddziałują na kompasu, czujników Halla, a nawet ekranu dotykowego.

Dla bezpieczeństwa unikaj przechowywania telefonu w pobliżu silnych magnesów. Więcej informacji znajdziesz na stronie niebezpieczne magnesy.
Prace mechaniczne z magnesami wiążą się z ryzykiem. Powstałe resztki po obróbce zanieczyszczają urządzenia, co uszkadza sprzęt. Twardość i kruchość materiału utrudnia precyzyjną obróbkę.
Większość ciał obcych, takich jak magnesy, połyka się bez powikłań i przechodzi przez przewód pokarmowy. 80-90% przypadków kończy się naturalnym wydaleniem w ciągu 4-6 dni. Jeśli dziecko połknie tylko jeden magnes lub monetę, wystarczy podać mu dużo wody i bułki, by pomóc w naturalnym wydaleniu. W przypadku połknięcia dwóch magnesów, może wystąpić problem, ponieważ mogą się one połączyć w przewodzie pokarmowym. W takim przypadku wymagana jest konsultacja z lekarzem i wykonać RTG, aby sprawdzić ich lokalizację i stan.

Najważniejsze jest, aby pozostać spokojnym i czekać na naturalny proces, zamiast szukać natychmiastowej pomocy. Więcej informacji znajdziesz na stronie niebezpieczne magnesy.

Ciekawostki o magnesach neodymowych

Odkryj interesujące fakty dotyczące magnesów neodymowych – od ich historii po niezwykłe właściwości.

Magnes neodymowy to nie to samo co suplement diety, tj. MAGNEZ – należy do grupy pierwiastków ziem rzadkich, ponieważ neodym znajduje się w układzie okresowym SI jako pierwiastek ziem rzadkich. Obecnie są one uznawane za najmocniejsze magnesy trwałe dostępne na rynku. Magnesy z neodymu są wytwarzane z mieszaniny neodymu, żelaza i boru o strukturze Nd2Fe14B. Obecnie są to najsilniejsze magnesy trwałe dostępne na masową skalę.
Zalety magnesów neodymowych:
największa gęstość energii względem masy,
bardzo powolna utrata mocy – około 1% na 10 lat,
tania produkcja.
Magnes neodymowy odkrył japoński naukowiec Sagawa Masato. On jako pierwszy podjął badania związane z magnetycznymi własnościami pierwiastków ziem rzadkich wykonywał w Fujitsu Laboratories przez około 10 lat. Później przeniósł się do Sumimoto Special Metals i twierdzi się, że właśnie tam, na początku lat 80-tych ostatecznie opracował technologię i stworzył współczesny spiekany magnes neodymowy oparty na związku Nd2Fe14B. Odtąd obserwuje się bardzo szybki rozwój tej dziedziny nauki.

Najczęstsze problemy użytkowników

Znajdź rozwiązania problemów, takich jak korozja, utrata siły magnetycznej czy trudności w montażu.

Magnesy przyczepiają się do lodówki ponieważ drzwi lodówki jest najczęściej wykonana z stali, która jest przyciągana przez magnesy. Typowe lodówki mają stalowe powierzchnie na zewnątrz, które pozwalają na przyczepianiu się magnesów.
Wybór odpowiedniego magnesu neodymowego zależy od wielu czynników, które warto wziąć pod uwagę, aby zapewnić jego skuteczność i bezpieczeństwo:

Wskazówki wyboru:
Siła magnetyczna: Zastanów się, jaka moc jest potrzebna do Twojego zastosowania.
Rozmiar i kształt: Upewnij się, że magnes pasuje do miejsca, w którym będzie używany.
Powłoka ochronna: Wybierz magnes z powłoką odporną na korozję, np. niklowaną.
Temperatura pracy: Magnesy neodymowe mogą tracić swoje właściwości w wysokich temperaturach.
Zastosowanie: Sprawdź, czy magnes spełnia wymagania dla przemysłu, elektroniki lub domowych potrzeb.
Magnesy na lodówce są czasami uznawane za niebezpieczne ze względu na możliwość porysowania drzwi lodówki, szczególnie gdy są często przesuwane. Dodatkowo, wyjątkowo mocne magnesy potencjalnie mogą wpływać na elektronikę w niektórych urządzeniach.
Należy usunąć magnesy z lodówki, jeżeli powodują one zarysować jej zewnętrzną część. Ponadto, silne magnesy mogą powodować problemy z elektroniką urządzenia. Czasem zaleca się zdjęcie ich, aby unikać długotrwałym uszkodzeniom, zwłaszcza jeśli są magnesy przesuwane po drzwiach niedbale.
Łowienie magnesem jest legalne w Polsce, choć brak szczegółowych regulacji bywa źródłem niejasności. W innych krajach kwestie te reguluje prawo lokalne:
W Stanach Zjednoczonych ogólnie rzecz biorąc, łowienie magnesem jest dozwolone z wyjątkami, np. w Karolinie Południowej, gdzie prawo zakazuje usuwania artefaktów z wód stanowych.
W Indianie, od 2025 roku, wymagane jest specjalne zezwolenie na łowienie magnesem.
W Wielkiej Brytanii i USA istnieją przepisy ograniczające łowienia magnesem w kontekście usuwania historycznych artefaktów.
Dla pewności, skonsultuj się z lokalnymi władzami przed rozpoczęciem takiej działalności.
Magnesy mogą być szkodliwe dla lodówki, jeśli zarysują jej wykończenie. Stałe przemieszczanie magnesów być może wywołać zadrapania. Jednakże, normalne wykorzystanie magnesów rzadko skutkuje poważnych uszkodzeń.
Aby pozbyć się klipsy antykradzieżowe z ubrania, możesz użyć magnesu do klipsów, takiego jak Magnes Ultra. Należy go przyłożyć do klipsa i delikatnie poruszaj, aż mechanizm się rozłączy.

Inne metody obejmują użycie narzędzi ręcznych lub zapalniczki, lutownicy podgrzewając plastik na wystającej części po czym kombinerkami lub nożyczkami rozsunąć plastik do odcięcia klipsa, zachowaj ostrożność, aby uniknąć uszkodzeń.

Jeśli zabezpieczenie używa taśmy, spróbuj zetrzeć taśmę, podgrzewając go np. suszarką używając np. patyczka do uszu.

W przypadku trudniejszych zabezpieczeń, skonsultuj się z działem pomocy w sklepie. Więcej informacji znajdziesz na stronie klipsy antykradzieżowe.
Magnesy mogą nie przyciągać skutecznie, jeśli metal nie jest ferromagnetyczny lub istnieje bariera między magnesem a powierzchnią. Sprawdź szczegóły w naszym przewodniku powłoki.
Nie zaleca się umieszczania magnesów na lodówce, gdyż mogą one zarysować jej wykończenie. Ponadto, ciężkie magnesy mogą deformować cienkie metalowe powierzchnie lodówek.
Magnesy mogą niszczyć lodówkę, jeśli ich ciągłe przemieszczanie powoduje uszkodzeniami powierzchni lodówki. Dodatkowo, niezwykle mocne magnesy mogą zakłócać systemy elektroniczne w niektórych nowoczesnych lodówkach.
Jeśli planujesz poszukiwania z użyciem magnesów neodymowych, istnieje kilka ważnych rzeczy, o których musisz pamiętać przy wyborze odpowiedniego modelu.
Po pierwsze, magnesy neodymowe można podzielić na dwa typy: ze względu na konstrukcję i sposób mocowania liny. Jeśli chodzi o mocowanie, magnesy montowane od góry sprawdzą się w łowieniu z pomostów, mostów czy też do sprawdzania studni. Są one również idealne do łowienia z łodzi.
Modele takie jak DHIT Magnet GOLD występują w pięciu mocach od 120 kg do 600 kg. Natomiast magnesy z podwójnym mocowaniem, takie jak DHIT Magnet GOLD, są najbardziej uniwersalne i pozwalają na łowienie zarówno z góry, jak i z boku (dwa uchwyty można śrubą złączyć po bokach i szukać - łowić - parami).
Jeśli chodzi o popularność, najczęściej wybieranymi modelami są: F200x2 GOLD, F300x2 GOLD oraz F550x2. Jeśli masz wątpliwości co do wyboru odpowiedniego magnesu, zachęcamy do skontaktowania się z nami. Chętnie doradzimy i pomożemy wybrać model, który najlepiej spełni Twoje oczekiwania i cele.
Więcej informacji o magnesach do poszukiwań w wodzie znajdziesz na stronie jaki magnes do poszukiwań? lub kategorii magnesy do poszukiwań.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98