magnesy neodymowe

Neodymowe magnesy Nd2Fe14B - nasza propozycja. Poszukujesz silnych neodymowych magnesów o średnicy 10 mm? Pełny wykaz dostępnych produktów znajduje się na poniższym spisie sprawdź cennik magnesów

magnesy do łowienia F 200 GOLD z mocnym uchem bocznym i liną

Gdzie zakupić bardzo mocny UM neodymowy magnes do poszukiwań? Uchwyty z magnesami w szczelnej, solidnej stalowej obudowie nadają się wyśmienicie do używania w trudnych, wymagających warunkach pogodowych, na przykład w deszczu i podczas śniegu czytaj...

magnesy z uchwytem

Magnetyczne uchwyty mogą być wykorzystywane do usprawniania procesów produkcyjnych, eksploracji podwodnych terenów lub do znajdowania skał kosmicznych z kruszcu. Mocowania to śruba 3x [M10] duża siła zobacz więcej informacji...

Ciesz się wysyłką zamówienia w dniu zakupu jeżeli zlecenie przyjęte jest do godziny 14:00 w dni robocze.

logo Dhit sp. z o.o.

FAQ - pytania i odpowiedzi o magnesach neodymowych

Magnes neodymowy – co to jest i jak działa? Do czego używamy tych silnych magnesów?

Zanurz się w fascynujący świat magnesów neodymowych – poznaj ich siłę, zastosowania i tajemnice! Oferujemy szczegółowe odpowiedzi na najczęściej zadawane pytania, rozwiewając wszelkie wątpliwości, jak funkcjonują i do czego można je stosować. Zrozum, dlaczego magnesy neodymowe są uznawane za najsilniejsze na świecie i jak ich użycie może wpłynąć na Twoje projekty.

zastosowania magnesów neodymowych
zastosowania magnesów

Wysyłka, dostawa i zwroty

Znajdź odpowiedzi na pytania dotyczące metod wysyłki, kosztów, terminów dostawy oraz zasad zwrotów. Dowiedz się, jak bezproblemowo zarządzać zamówieniami online.

Akceptujemy przelewy tradycyjne, szybkie z mBanku oraz wysyłamy przesyłki za pobraniem. Więcej informacji znajdziesz w sekcji transport.
Zamówienia są wysyłane każdego dnia roboczego, a przesyłki docierają w ciągu 24-48 godzin od momentu potwierdzenia płatności. Przy płatności za pobraniem wysyłki nadawane są każdego dnia roboczego około godziny 16, paczkomaty o godzinie 17-tej.

Praca z magnesami neodymowymi

Dowiedz się, jak bezpiecznie i efektywnie obsługiwać magnesy neodymowe – od mocowania po separację i użytkowanie w projektach.

Magnesy samoprzylepne umożliwiają łatwe przymocowanie magnesu do powierzchni niemagnetycznych, takich jak drewno oraz inne materiały niemagnetyczne. Oferujemy zarówno magnesy w kształcie prostokątnym, jak i dysku z samoprzylepną warstwą.

Zwykle magnesy te dostępne są w opakowaniach, gdzie jedna strona jest pokryta samoprzylepnym materiałem na biegunie północnym, a druga na biegunie południowym. Pozwala to na przyciąganie, gdy jest to potrzebne, np. do tworzenia zamknięć lub złącz.

Nasze magnesy samoprzylepne wykonane są z piankowego kleju, który również jest dostępny osobno w postaci dwustronnych naklejek samoprzylepnych. Ten klej wysokiej wydajności zapewnia doskonałą wytrzymałość na ścinanie, zapobiegając przesunięciom i unoszeniu krawędzi.

Aby użyć magnesu, wystarczy odkleić papier z kleju i przykleić go w wybranym miejscu. Klej jest na tyle silny, że pozwala na ponowne ustawienie magnesu, co umożliwia dokładne dopasowanie do specyfikacji. Po umieszczeniu magnesu w odpowiednim miejscu, należy go mocno docisnąć, aby zapewnić równomierne przyleganie.

Rekomendujemy, aby po przyklejeniu magnesu poczekać 24-48 godzin, aby klej dobrze stwardniał przed nałożeniem jakiejkolwiek siły na połączenie.
Magnesy neodymowe to jedne z najsilniejszych dostępnych magnesów na rynku. Wyróżniają się wieloma zaletami, które sprawiają, że są chętnie wybierane w wielu zastosowaniach:

Kluczowe cechy:
Niezwykle silna siła magnetyczna, pozwalająca na skuteczne przyciąganie nawet z dużej odległości.
Kompaktowe rozmiary, co oznacza, że nawet małe magnesy mają ogromną moc.
Wysoka odporność na rozmagnesowanie w standardowych warunkach użytkowania.
Szeroki zakres zastosowań, od przemysłowych po codzienne użycie w domu.
Wymagają jednak ostrożności podczas użytkowania, aby uniknąć uszkodzeń lub obrażeń.
Aby wybrać najlepszy magnes, warto przeprowadzić dokładne badania i zastanowić się nad kształtem oraz siłą. Na początku oszacuj, jaki rozmiar magnesu będzie potrzebny, np. czy chcesz użyć magnesu walcowego lub magnesu z otworem. Pamiętaj, że większy magnes jest silniejszy, ale może być również bardziej niebezpieczny w użyciu. Następnie zwróć uwagę na siłę przyciągania, która jest kluczowa przy doborze magnesu do projektu. Więcej informacji na temat siły przyciągania znajdziesz w karcie produktu.
Magnesy są niezbędne w wielu projektach, zarówno do poprawy funkcji w domu, jak i jako część produktów sprzedawanych. W niektórych przypadkach konieczne jest ich sklejenie. Oto kilka wskazówek, które pomogą Ci osiągnąć sukces już za pierwszym razem.

Wskazówki aplikacyjne:
Zawsze przeczytaj instrukcje kleju, którego używasz.
Przed nałożeniem kleju, upewnij się, że powierzchnie są czyste. Resztki, tłuszcz czy brud mogą stworzyć barierę, która utrudni prawidłowe przyklejenie magnesu.
Zaleca się szlifowanie gładkiej powierzchni magnesu, co poprawia przyczepność kleju.
Klejenie magnesów do plastiku bywa trudniejsze z powodu problemów z uzyskaniem dobrej przyczepności kleju. Skonsultuj się z pomocą techniczną producenta kleju, aby uzyskać porady dotyczące plastiku.
Najlepszym wyborem kleju jest dwuskładnikowa żywica epoksydowa, która sprawdza się w większości przypadków. Polecane kleje to: Loctite Plastic Bonder Epoxy, E6000 Adhesive, Super Glue, Gorilla Glue, i wiele innych.
Unikaj używania pistoletów do kleju na gorąco, ponieważ wysoka temperatura może spowodować rozmagnesowanie magnesów.
Do montażu tablic rejestracyjnych zaleca się użycie dwóch magnesów MPL 40x18x10 / N38 - magnes neodymowy płytkowy pod zderzak oraz dwóch magnesów MPL 40x20x5 / N38 - magnes neodymowy płytkowy pod tablicę rejestracyjną. Ważne jest, aby pod tablicę przymocować cienką blachę, co pozwoli na przykrycie magnesów i zabezpieczenie ich przed odłączeniem się z powodu ciepła i wibracji. Ponieważ tablice rejestracyjne są wykonane z aluminium i nie są magnetyczne, blacha pomoże w utrzymaniu magnesów w pożądanej pozycji. Dodatkowo, nity na tablicy mogą tworzyć złudzenie, że tablica jest trwale przymocowana, co zwiększa ochronę przed kradzieżą.
Magnes przyciąga żelazo, ponieważ żelazo jest materiałem silnie magnetycznym. Struktura atomowa żelaza pozwala na skuteczne zakotwiczenie z polem magnetycznym magnesu.
Magnes zazwyczaj nie przyciąga aluminium, ponieważ aluminium nie należy do metali ferromagnetycznych. Jednakże, w niektórych sytuacjach, jak w obecności silnych pól magnetycznych, aluminium może wykazywać słabe efekty magnetyczne.
Magnes przyciąga metal, ponieważ niektóre metale, takie jak stal, mają cechy przyciągające magnesy. Gdy magnes neodymowy zbliża się do stalowej powierzchni, wytwarzane są siły magnetyczne, które łączą magnes z metalem.
Użyj kompasu: Prosty sposób to użycie kompasu. Uważaj, by igła kompasu nie dotknęła magnesu, aby nie uszkodzić kompasu. Strzałka kompasu wskazuje fizyczny biegun magnesu 'S'.
Skorzystaj z aplikacji na smartfonie: Istnieją aplikacje, które pomagają zidentyfikować bieguny magnesu.
Użyj teslametru: Teslametr pomiar indukcji magnetycznej i wskaże, który biegun jest który.
Wykrywacz biegunów magnetycznych: Możesz także zakupić wykrywacz biegunów magnetycznych, który pomoże Ci wygodnie zidentyfikować bieguny. Więcej informacji o kierunkach magnetycznych znajdziesz na stronie NS magnesy.
Aby namagnesować magnes neodymowy, należy przeprowadzić proces zwany "indukcją magnetyczną". Istnieje kilka sposobów na namagnesowanie magnesu:
Przy pomocy innego magnesu neodymowego: Umieść magnes obok silnego magnesu neodymowego, tak aby przesuwaj magnesy, dopasowując ich bieguny.
Przy użyciu prądu elektrycznego: Przełącz magnes na przewody elektryczne, co powoduje, że prąd indukuje pole magnetyczne.
Przy użyciu specjalistycznego urządzenia: Urządzenia do indukcji magnetycznej dostępne w sklepach z elektroniką umożliwiają namagnesowanie magnesu przy użyciu silnego pola magnetycznego.

Ważne: Proces namagnesowania magnesu neodymowego może być trudny, jeśli magnes jest osłabiony lub zniekształcony. Więcej o metodach namagnesowania i kierunkach biegunów można znaleźć w naszym poradniku technologicznym.
Magnes i uchwyt magnetyczny różnią się konstrukcją i przeznaczeniem. Magnes to element wykonany z materiału magnetycznego, który przyciąga metale ferromagnetyczne, takie jak stal, żelazo, nikiel, kobalt. Stosowany jest w różnych dziedzinach, takich jak branża przemysłowa.

Uchwyt magnetyczny to magnes z zamontowaną obudową, która chroni go przed uszkodzeniami, takimi jak pęknięcia czy zarysowania. Dzięki specjalnej konstrukcji, uchwyt magnetyczny może mieć dodatkowe elementy, jak gwinty czy uchwyty, ułatwiające montaż i użytkowanie. Zaletą uchwytów magnetycznych jest ich duża siła przyciągania, ale zasięg ich działania jest ograniczony. Więcej informacji o magnesach i uchwytach magnetycznych znajdziesz na stronie technologia.
Aby wyciągnąć wgniecenia z blachy samochodowej, istnieje kilka metod. Jedną z nich jest użycie magnesu w połączeniu z dużą kulą ferromagnetyczną na drugiej stronie blachy. Dzięki temu możliwe jest odgięcie blachy, jednak metoda ta jest skuteczna tylko, gdy blacha ma grubość powyżej 0,6 mm.

Inną metodą jest PDR (Paintless Dent Repair), polegająca na odginaniu blachy za pomocą specjalnego zestawu (koszt ok. 500 PLN). Ta czasochłonna metoda pozwala na usunięcie wgnieceń bez konieczności lakierowania.

Alternatywnie, można użyć specjalistycznego urządzenia PDR 1000, które generuje pole magnetyczne i jest dedykowane do usuwania wgnieceń w elastycznych stalowych karoseriach. To rozwiązanie jest szybkie i profesjonalne, a także znakomite dla warsztatów samochodowych. Więcej informacji o magnesach znajdziesz w naszym przewodniku technologicznym.
Magnes RM R6 GOLF - 13000 Gs / N52 - rozdzielacz magnetyczny marki DHIT to jeden z najlepszych magnesów do klipsów antykradzieżowych, o wysokiej mocy 12000-13000 GS. Dzięki swojej unikalnej konstrukcji w kształcie "walca" z wgłębieniem w centrum, magnes działa podwójnie na klipsy o różnych kształtach, umożliwiając ich szybkie i łatwe usunięcie. Magnes jest prosty w użyciu i wygodny, a jego montaż na blacie kasy jest bardzo prosty. Jest to nowoczesne i efektywne narzędzie polecane do sklepów, takich jak sklepy z odzieżą używaną. Idealne dla sprzedawców, którzy cenią skuteczność i szybkość. Więcej informacji o magnesach do zdejmowania klipsów antykradzieżowych znajdziesz na stronie klipsy antykradzieżowe.
Nie, nie powinno się lutować ani spawać magnesów neodymowych. Ciepło generowane podczas lutowania lub spawania może rozmagnesować magnesy, co prowadzi do usunięcia właściwości magnetycznych. Dodatkowo, może wystąpić ryzyko pożaru podczas procesu. Spalanie magnesów prowadzi do emisji toksycznych gazów, co stanowi zagrożenie dla zdrowia i może prowadzić do toksycznego zatrucia. Zamiast tego, należy stosować odpowiednie techniki, które nie wpływają na ich magnetyczność.
Oddzielanie mocnych magnesów neodymowych wymaga delikatności i wprawy. Najlepszym sposobem jest wykorzystanie narzędzi takich jak kliny lub specjalne narzędzia do magnesów.
Zacznij od zsuń jeden magnes w bok, zamiast ciągnąć go wprost. Przytrzymuj magnesy, aby zapobiec ich nagłemu połączeniu. Więcej informacji znajdziesz na stronie narzędzia separacyjne.
Do obróbki neodymowych magnesów stosuje się specjalistyczne tarcze diamentowe z chłodzeniem wodnym. Precyzja i specjalistyczna wiedza są kluczowe. Więcej informacji znajdziesz na stronie narzędzia diamentowe.
Tak, łączenie magnesów może zwiększyć ich siłę przyciągania, jeśli bieguny są prawidłowo ustawione. Zwiększenie mocy ma swoje ograniczenia.

Zastosowania magnesów

Poznaj inspiracje i przykłady wykorzystania magnesów neodymowych w domu, przemyśle oraz w kreatywnych projektach.

Nasza oferta obejmuje szeroki wybór magnesów, które zaspokoją potrzeby zarówno klientów indywidualnych, jak i firm:

Rodzaje magnesów:
Magnesy neodymowe: najsilniejsze na rynku, idealne do zaawansowanych zastosowań.
Magnesy ferrytowe: ekonomiczne rozwiązanie do mniej wymagających projektów.
Magnesy gumowane: odporne na uszkodzenia i nadające się do delikatnych powierzchni.
Magnesy specjalistyczne: np. do czujników, separatorów magnetycznych czy uchwytów.
Magnesy o różnych kształtach: walce, kostki, pierścienie, a także niestandardowe formy na zamówienie.
Nie, zwykły magnes nie jest w stanie skutecznie zamienić zaawansowanego separatora magnetycznego. Pomimo teoretycznych możliwości jest to wykonalne, w rzeczywistości zastosowanie pojedynczego magnesu zamiast skomplikowanego separatora magnetycznego okaże się niewydajne. Separatory magnetyczne to skomplikowane urządzenia, które są przystosowywane do specyficznych warunków i warunków pracy, a także często wyposażone w mechanizmy czyszczące i elementy mocujące. W branżach takich jak przemysł spożywczy, gdzie istnieją specyficzne wymogi dotyczące oczyszczania produktów za pomocą pola magnetycznego, użycie pojedynczego magnesu zamiast separatora nie będzie wystarczające, ale także narazić na kary przy kontroli przez audytorów.
Magnesy to niezwykle wszechstronne narzędzia, które znajdują zastosowanie w wielu dziedzinach życia i przemysłu:

Przykładowe zastosowania:
Dom: Organizacja narzędzi, mocowanie zdjęć, czy tworzenie zamknięć magnetycznych.
Biuro: Tablice magnetyczne, uchwyty do dokumentów, organizery.
Przemysł: Separacja metali, mocowanie elementów, silniki elektryczne.
Edukacja: Eksperymenty fizyczne, nauczanie zasad magnetyzmu.
Hobby i sztuka: Tworzenie magnesów dekoracyjnych, modelarstwo, projekty DIY.
Magnesy na lodówkę wykonane są głównie z arkuszy magnetycznych, które prosto można przyciąć i udekorować. Popularnym materiałem jest także żywica, stosowana do uzyskania estetycznych wykończeń. Plastelina pozwala tworzyć indywidualne magnesy, a papier sprawdza się przy tworzeniu magnesów z zdjęciami. Dodatkowo, w produkcji magnesów często wykorzystuje się kleje do mocowania elementów dekoracyjnych.
Magnesy neodymowe są szeroko stosowane w różnych dziedzinach, takich jak elektronika, przemysł motoryzacyjny, medycyna, rolnictwo i inne. Można je znaleźć m.in. w głośnikach, silnikach elektrycznych, magnesach stosowanych w leczeniu chorób, a nawet w magnesach stosowanych w rolnictwie do wyznaczania poleceń dla maszyn rolniczych.
Magnesy neodymowe znajdują zastosowanie w elektronice, medycynie i motoryzacji, takich jak produkcja urządzeń audio, silniki elektryczne, a także magnetoterapia.
Magnesy neodymowe są szeroko wykorzystywane w przemyśle, elektronice i medycynie. Znajdują zastosowanie w silnikach elektrycznych, głośnikach i sprzęcie medycznym. Więcej przykładów znajdziesz na stronie zastosowania magnesów.
Magnesy przyczepiają się do lodówek ponieważ znaczna część lodówek ma stalowe powierzchnie. Stalowe drzwi lodówki są jako powierzchnie przyciągające magnesy, co pozwala magnesom zachować przyczepność.
Jeśli potrzebujesz silnego magnesu do pracy, polecamy modele z serii UMP, takie jak:
Magnes UMP 67x28 [M8+M10] F120 GOLD, idealny do pracy dzieci,
Magnes UMP 75x25 [M10x3] F200 GOLD, uniwersalny wybór z udźwigiem 290 kg,
Magnes UMP 94x28 [M10] F300 GOLD, przeznaczony dla profesjonalistów.
Więcej informacji znajdziesz na stronie jaki magnes do poszukiwań.
W pierwszej kolejności głównymi odbiorcami na magnesy są przedsiębiorstwa produkujące urządzenia pomiarowe, elektroniczne, elektryczne, przedsiębiorstwa motoryzacyjne czy dostarczające najróżniejsze maszyny dla przemysłu. Zalety magnesów dużej mocy doceniła również branża meblarska, odzieżowa, w szczególności związana z odzieżą medyczną, firmy wytwarzające zapięcia do galanterii oraz branża reklamowa.
Tworzenie własnych magnesów na lodówkę jest proste. Potrzebujesz małego magnesu neodymowego, kleju i ozdobnej powierzchni (np. drewnianej figurki). Połączenie elementów klejem i gotowe!

Informacje techniczne o magnesach

Szczegółowe dane techniczne na temat magnesów neodymowych – od klas i powłok ochronnych po ich właściwości i zastosowania.

Magnesy neodymowe pracują w zakresie temperatur od -130°C do nawet 230°C, w zależności od ich typu.
Siła oddziaływania dwóch biegunów magnetycznych to kluczowy aspekt działania magnesów, który można łatwo zaobserwować w praktyce:

Podstawowe zasady:
Bieguny przeciwne (N i S) przyciągają się, tworząc stabilne połączenie.
Bieguny te same (N i N lub S i S) odpychają się, powodując trudność w ich zbliżeniu.
Siła oddziaływania zależy od odległości między biegunami i mocy magnesów.
Pola magnetyczne mogą wpływać na przewodniki, a także na niektóre urządzenia elektroniczne, dlatego należy zachować ostrożność.
Ukierunkowane wykorzystanie biegunów magnetycznych pozwala na efektywne zastosowanie w technologiach, jak np. w silnikach elektrycznych czy separatorach.
Pierwsze udokumentowane badania i testy nad nowoczesnymi materiałami nadającymi się do stworzenia silnych elementów magnetycznych miały miejsce w 1966 roku. Właśnie w tamtym okresie G. Hoffer i K. Strnat z Air Force Materials Laboratory w Dayton, zaczęli szeroki zakres badań nad nowymi materiałami, zrobionymi z metali zaliczanych do grupy metali ziem rzadkich. Początkowo testowane stopy, jakie miały posłużyć do stworzenia mocnych magnesów, opierały się o kobalt, żelazo oraz kilka lantanowców, do których zaliczamy: cer Ce, prazeodym Pr, neodym Nd, samar Sm, lantan La i itr Y. Te mało znane metale wykazywały szczególne właściwości, takie jak magnesowanie do dużych wartości, ale posiadały bardzo niską temperaturę Curie. Obecnie tworzone elementy magnetyczne o dużej sile w swoim składzie posiadają poza żelazem również dodatek lekkich lantanowców, co im zapewnia wysoki poziom anizotropii magneto-krystalicznej, a oprócz tego uzupełnia się ten skład o niewielką ilość kobaltu w celu podwyższenia całkowitej temperatury Curie. Pierwsze silne magnesy udało się opracować w 1970 roku wykorzystując sproszkowane ziarna samaru wraz z innymi związkami z grupy lantanowców. Został stworzony nieznany dotychczas, potężny magnes SmCo5. Proces opierał się na zjawisku kierunkowania drobinek sproszkowanego stopu w polu magnetycznym podczas spiekania. Tworzenie wyprasek odbywało się w wysokiej temperaturze około 1120°C wraz z końcowym wyżarzaniem w temperaturze 850°C. Finalnym z etapów produkcji magnesu o dużej mocy było magnesowanie całości w polu magnetycznym 2T. Po zastosowaniu tej technologii temperatura Curie magnesów SmCo5 została podniesiona do 745°C.
Podczas kiedy projektowano następne silne magnesy wykorzystujące samar, w 1983 roku zostały odkryte nieznane dotychczas magnetyczne cechy neodymu w połączeniu z żelazem i stalą. Amerykańska firma GM rok po odkryciu stworzyła nowy związek o strukturze chemicznej Nd2Fe14B, w proporcji 6% boru, 15% neodymu i ponad 70% żelaza. Przemysłowy proces wytwarzania mocnych neodymowych magnesów opiera się na dwóch metodach. Japoński zakład Sumitomo, wchodzący w skład firmy Hitachi, tak samo jak procesie tworzenia magnesów na bazie samaru, wykorzystywał technikę spiekania odpowiednio przygotowanego proszku, co pozwalało uzyskać gęste magnesy.

W Stanach Zjednoczonych silne magnesy neodymowe wytwarzano w zakładach firmy GM metodą dynamicznego ochładzania roztopionego proszku izotropowego. Z jakich powodów wykorzystanie żelaza, neodymu i boru okazało się o wiele bardziej wydajne? Wykorzystanie neodymu okazało się o wiele tańsze, niż samar, a poza tym neodym charakteryzuje się znacznie lepszymi parametrami magnetycznymi. Jednak temperatura Curie neodymu nie była na odpowiednim poziomi, dlatego postanowiono podnieść tę temperaturę do 530°C. Taki poziom uzyskano dzięki dodaniu do składu magnesu neodymowego niewielkiej ilości boru. Poza tym można też w szerokim zakresie korygować właściwości magnetyczne, przez wprasowanie do stopów dodatkowych pierwiastków, takich jak gal Ga, miedź Cu, niob Nb oraz glin Al.

Magnesy neodymowe wyposażane są też w warstwy ochronne chroniące przed korozją oraz mające zabezpieczające działanie przed szkodliwymi warunkami atmosferycznymi. Realizuje się to poprzez dodanie cieniutkiej warstwy miedzi albo niklu np. w uchwytach magnetycznych do poszukiwań, to znaczy mocnych magnesach używanych do sprawdzania dna akwenów wodnych. Opracowywane są również nowe typy magnesów neodymowych, a dzięki postępowi w technologii metalurgicznej proszków, konstruowane są coraz to nowe stopy metali cechujące się zwiększoną koercją, jak też magnesy o znacznie wyższej temperaturze Curie i możliwości namagnesowania stopów, przekraczające 1,6Tesli.
Magnesy neodymowe to dziś najmocniejsze rodzaje magnesów, jakie powstały do tej pory. W 1990 roku w dublińskim instytucie Trinity College Michae Coey opracował zupełnie nowy magnetyczny stop wzorze chemicznym Sm2Fe17N2. Jego proces wytworzenia opierał się o syntezę rozdrobionego żelaza i samaru, które podczas prasowania w polu magnetycznym o dużej mocy razem z domieszką azotu, uzyskały zakres temperatury Curie wynoszący 470°C i namagnesowanie w okolicach 0,9T. Nie jest to wynik zbliżony do poziomu magnesów wykonanych z neodymu, jednak nowo opracowany materiał przewyższał w znacznym stopniu pierwsze z produkowanych magnesów. Ostatnie lata minionego wieku przyniosły kolejne pomysły w zakresie magnesów o dużej mocy oraz sposobów ich produkcji.
Opracowany został materiał i strukturze nano-krystalicznej, zbudowany z mikroskopijnych ziaren o wielkości mniejszej niż 100 nm. Odkryte w czasie badań ziarna nano-kryształów, w przeciwieństwie do monokryształów są od siebie oddzielone o wiele większymi granicami o wyższym napięciu powierzchniowym i nieuporządkowanej strukturze wewnętrznej. Poprzez zastosowanie, podczas spiekania mieszaniny pierwiastków z rodziny ziem rzadkich wraz z dodatkiem żelaza, charakteryzują się remanencją magnetyczną na wysokim poziomie. Tak dobre właściwości magnetyczne biorą się dodatkowo z jednej istotnej rzeczy, czyli połączenia magnetycznych momentów żelaza z neodymem. Jest dzięki temu możliwe bardzo dobre magnesowanie neodymowych magnesów.
Aktualnie produkuje się magnesy neodymowe przede wszystkim w krajach azjatyckich. Podstawowym wytwórcą i eksporterem tego typu wyrobów zostały Chiny, ze względu na kontrolę nad większością światowych złóż pierwiastków ziem rzadkich. Do wytwarzania przemysłowego silnych magnesów zastosowanie znalazły głównie dwa związki: Nd2Fe14B i Sm2Fe17N2. Są to magnesy na bazie neodymu i magnesy o strukturze nano krystalicznej, cechujące się nie tylko najwyższym stopniem namagnesowania, lecz także wysoką remanencją magnetyczną. Zastosowanie magnesów o dużej mocy jest naprawdę bardzo szerokie. Najważniejszymi grupami odbiorców stały się podmioty zajmujące się produkcją, tworzące sprzęt elektryczny i elektroniczny, szczególnie firmy zajmujące się motoryzacją, stosujące bardzo wydajne silniki elektryczne i hybrydowe. Do wytwarzania silników tego typu używa się neodymowych magnesów ze stopu z pierwiastkami zmniejszającymi spadki wydajności magnesów przy wysokiej temperaturze na przykład takimi jak Terb (Tb) czy dysproz (Dy) . Przez użycie powyższych substancji, znacząco poprawiono koercję magnetyczną, a także wydajność całkowitą silnych magnesów wykorzystywanych w urządzeniach elektrycznych o większej mocy. W USA od kilkudziesięciu lat prowadzone są badania przez specjalnie do tego celu powołany Instytut Rare Earth Alternatives in Critical Technologies (REACT), który ma zadanie opracowywać alternatywnych materiałów. Przed kilku laty ARPA-E desygnowała blisko 32 miliony dolarów na rozwój projektów w programie Rare-Earth Substitute, czyli możliwości stworzenia substytutów metali ziem rzadkich jako zastępstwo dla naturalnych złóż pierwiastków, kontrolowanych przez rząd Chin.

Produkowanie magnesów z neodymu opiera się na dwóch metodach. Japońskie firmy stosowana jest metoda spiekania proszków ferromagnetycznych, a na terenie Stanów Zjednoczonych popularna jest technika opierająca się o szybkie chłodzenie. W zależności od wymagań, magnesy neodymowe można wytwarzać poprzez zastosowanie innych stopów, między innymi aluminium, galu lub miedzi. Przez takie domieszki można regulować magnetyczne parametry samego magnesu, jego wytrzymałość, a także możliwość pracy w wysokich temperaturach. Da się nawet sprawić, że magnes będzie odporny na niekorzystne atmosferyczne warunki, na przykład wodę, która powoduje zmiany korozyjne. Za to regularne dopracowywanie metalurgii proszków przyczyniło się do opracowania różnego rodzaju stopów, które wpłynęły w dużym stopniu na zwiększenie tak zwanej temperatury Curie. Stworzony nowoczesną metodą produkcyjną magnes z neodymu, może osiągnąć poziom namagnesowania przekraczający 1,6T, czyli o wiele wyższe chociażby od ziemskiego pola magnetycznego.
Magnes neodymowy to najmocniejszy magnes stały produkowany przez człowieka. Jego niesamowicie silny magnes wynika z połączenia żelaza, neodymu i boru w odpowiedniej proporcji w celu uzyskania tetragonalnej struktury krystalicznej związku Nd2Fe14B. Taki skład stopu daje niespotykane wcześniej własności magnetyczne, w tym wyjątkowo wysoką anizotropię magnetokrystaliczną.
Magnesy neodymowe często produkowane są w formie spieków, ale istnieje również możliwość produkcji magnesów neodymowych jako tzw. magnesy wiązane, używając jako spoiwa żywic bądź tworzyw sztucznych.
Magnesy neodymowe to stop Fe, boru, neodymu oraz innych dodatków. Proces produkcji zaczyna się od dobrania odpowiednich ilości każdego z komponentów, które zostają stopione, a następnie odlane. Powstałe blachy są kruszone metodą wodorową, a następnie mielone na proszek. Otrzymany w ten sposób proszek jest poddawany procesowi zagęszczania. Materiał zostaje prasowany metodą pirometalurgiczną pod dużym ciśnieniem, co umożliwia uzyskanie dużego stopnia gęstości i jednorodności. W czasie procesu formowania, materiał jest magnetyzowany przy użyciu pola magnetycznego, które wyznacza kierunek magnesowania, jeśli produkowane są magnesy anizotropowe, lub bez użycia pola magnetycznego, jeśli potrzebne są magnesy izotropowe. Następnie, kształtki są spiekane, a po tym zabiegu poddawane są obróbce mechanicznej i powierzchniowej (w tym pokrywane są warstwami ochronnymi). Na koniec, gotowy produkt jest zmagnesowany w magneśnicy, a finalnie staje się magnesem.
Magnesy ziem rzadkich to magnesy, które zawierają przynajmniej w jakiejś części metale nazywane pierwiastkami ziem rzadkich. Do tej grupy pierwiastków zaliczamy: skand, itr, lantan, cer, prazeodym, neodym, promet, samar, europ, gadolin, terb, dysproz, holm, erb, tul, iterb i lutet. Najbardziej znane z tych pierwiastków dla każdego użytkownika magnesów to oczywiście neodym, który jest wykorzystywany do produkcji magnesów NdFeB, oraz samar, który jest wykorzystywany do produkcji magnesów SmCo. Pierwiastki ziem rzadkich wcale nie występują w małych ilościach w skorupie ziemskiej. Tak naprawdę występują dosyć obficie, ale zazwyczaj ich złoża są rozproszone i skąpe, co uniemożliwia opłacalne ich wydobycie. W związku z tym, zostały nazwane „pierwiastkami ziem rzadkich”.
Oczywiście najsilniejszy będzie magnes wykonany z materiału o najwyższej mocy magnetycznej (np. N54. Jednocześnie jednak, takie materiały są dużo droższe od standardowych. Wyższy magnes będzie działał na większą odległość, linie sił pola magnetycznego będą wychodzić z płaszczyzny bieguna strzeliście do góry i istnieje szansa na przyciągnięcie elementu z żelaza lub innego magnesu z dalszej odległości. Natomiast płaski magnes w praktyce będzie miał większy udźwig, będzie w stanie przytrzymać i podnieść elementy o większej powierzchni i gabarytach.
Oznaczenia stosowane dla neodymów obejmują cyfry i litery, gdzie symbole literowe jak M ("medium"), H ("high"), SH ("super high"), UH ("ultra high"), EH ("extra high") odnoszą się do wartości koercji magnesu na rozmagnesowanie w wyniku wysokiej temperatury lub oddziaływania przeciwnego pola magnetycznego, a cyfry jak 35, 38, 42, 45, 48, 50, 52 określają poziom energii magnetycznej magnesu wyrażoną w MGsOe. Na przykład, symbol N52SH wskazuje, że jest to magnes neodymowy z gęstością energii osiągającą 52 Mega Gauss Oerstedach - (MGsOe) i ma bardzo wysoką wartość koercji (SH oznacza "super high").
Magnesy neodymowe zazwyczaj są dostępne w bardzo nieskomplikowanych kształtach takich jak: prostopadłościan, a także pierścień czyli walce neodymowe z otworem. Potocznie mówimy wtedy o magnesach płytkowych ale trzeba też dodać, że magnesy zarówno płytkowe jak i pierścieniowe mogą być wykonywane ze specjalnie fazowanymi otworami ułatwiającymi schowanie, zlicowanie z powierzchnią magnesu łba śruby lub wkrętu. Istnieje także możliwość wykonania magnesów neodymowych w kształcie kuli oraz tzw. magnesów segmentowych (łukowych) będących wycinkami pierścienia. Można również zamówić magnesy w kształcie np. trapezu lub innych figur geometrycznych, pod warunkiem, że da się taki kształt wyciąć za pomocą elektrodrążarki i nie pokruszyć przy tej operacji kształtki magnesu. Kruchość magnesów neodymowych jest cechą ograniczającą wykonywanie skomplikowanych kształtów, przykładowo, nie da się wykonać gwintu bezpośrednio w samym magnesie
Magnesy neodymowe wytwarzane ze związku stopu żelaza, boru i neodymu to spiek żelaza, boru i neodymu. W rzeczywistości w skład magnesu neodymowego wchodzi tylko około trzydziestu procent związku Nd2Fe14B, dzięki swojej budowie atomowej magnesy te są tak silne.
Do namagnesowania magnesu stosuje się tzw. magneśnice, czyli urządzenia, w których możliwe jest wytworzenie odpowiednio dużego stałego pola elektromagnetycznego. Po zwiększeniu pola (natężenie prądu) do punktu zwanego punktem nasycenia, dalsze jego zwiększanie nie ma sensu, gdyż nie zwiększa to indukcji magnetycznej magnesu. Następnie wartość zewnętrznego pola jest zmniejszana do zera. Właściwości magnesów neodymowych, wykonanych z materiałów magnetycznie twardych sprawiają, że po wyłączeniu pola wartość namagnesowania nie spada do zera tylko ustala się w punkcie Br, czyli indukcji remanencji, zwanej także punktem pozostałości magnetycznej (namagnesowaniem resztkowym). Proces magnesowania najlepiej opisuje pierwsza ćwiartka pętli histerezy magnetycznej.
Tak, istnieje kilka sposobów na rozmagnesowanie magnesów neodymowych. Najprostszym z nich jest ogrzanie magnesu najpierw powyżej zdefiniowanej dla materiału magnetycznego maksymalnej temperatury pracy, zazwyczaj jest to 80 stopni C - co spowoduje częściowe odmagnesowanie, a później rozgrzanie powyżej temperatury Curie, czyli takiej powyżej której ferromagnetyk staje się paramagnetykiem, będzie to skutkowało całkowitym rozmagnesowaniem. Innymi sposobami na rozmagnesowanie magnesów z neodymu są: działanie odpowiednio dużym stałym i przeciwnym polem magnetycznym lub poddanie magnesu zanikającym i przemiennym polem magnetycznym.
Magnes neodymowy jest powszechnie wykorzystywany w wielu urządzeniach elektrycznych: i miernikach, instalacjach alarmowych, monitorach, silnikach. Do głównych gałęzi w których wykorzystuje się magnesy neodymowe zaliczamy: spożywczy.
Najważniejszym kryterium w doborze magnesów neodymowych będzie jego zastosowanie. Należy wziąć pod uwagę temperaturę pracy, pogodę i wreszcie siłę magnetyczną z jaką ma działać magnes. Siła działania magnesów neodymowych często podawana jest jako udźwig w kilogramach. Należy wziąć pod uwagę, iż jest to wartość mierzona w laboratoriach, w idealnych warunkach, przy idealnym kontakcie magnesu z podłożem ferromagnetycznym i co istotne kierunek działania tej siły jest prostopadły do powierzchni kontaktu magnesu z podłożem. W razie wątpliwości proszę kontaktować się z doradcami firmy Dhit sp. z o.o. telefon w zakładce kontakt.
Magnes z neodymu wykazuje silne oddziaływanie przede wszystkim żelazo i wszelkie stopy z jego domieszką oraz metale: gadolin, nikiel, erb, kobalt i dysproz. To, czy dany element zostanie łatwiej czy też trudniej przyciągnięty przez magnes, zależy też od kształtu tego elementu. W długim elemencie, np. w żelaznym gwoździu, kiedy zostanie on nasycony polem magnetycznym z magnesu stałego, szybko ustalą się miejsca biegunów magnetycznych, t.j. na jednym końcu gwoździa będzie „N”, a na drugim „S”. Jeżeli ten sam gwóźdź przetopimy i uformujemy z niego kulę, to okaże się, zwłaszcza jeżeli kula będzie w ruchu, że będzie ją trudniej wychwycić za pomocą pola magnetycznego.
Nie, nie podwoi się.
Gęstość strumienia magnetycznego jest ilością strumienia magnetycznego w jednostce powierzchni. Chociaż gęstość strumienia stanie się nieco silniejsza, gdy dwa magnesy zostaną umieszczone pionowo jeden na drugim, ponieważ powierzchnia pozostanie taka sama, nie będzie znaczącej różnicy. Na przykład, jeśli dwa magnesy o rozmiarze MW 10mm x 10mm zostaną umieszczone jeden na drugim, gęstość strumienia magnetycznego będzie prawie taka sama jak dla magnesu o rozmiarze MW 10x10 mm.
Magnetyzm jest trwały. Ścisłe mówiąc, magnetyzm osłabia się przez lata, jednak demagnetyzacja jest tak niewielka, że nawet po kilkudziesięciu latach nie odczuwa się znacznego osłabienia. Dlatego magnesy neodymowe są powszechnie uważane za niewrażliwe na demagnetyzację i nazywane magnesami trwałymi. Demagnetyzacja częściej występuje z powodu zmian temperatury i obciążenia odpychającego, a nie ze względu na upływ czasu. Magnesy z materiału Alnico mogą wymagać ponownego namagnesowania, ponieważ łatwo ulegają demagnetyzacji z powodu obciążenia odpychającego.
Magnez to pierwiastek chemiczny o symbolu Mg, znany ze swoich wyjątkowych właściwości, takich jak lekkość i odporność na korozję. W kontekście oddziaływania z magnesami, sytuacja jest bardziej złożona niż w przypadku materiałów ferromagnetycznych, takich jak żelazo czy nikiel.

Kluczowe informacje:
Magnez jest paramagnetyczny, co oznacza, że reaguje na pole magnetyczne, ale siła przyciągania jest bardzo słaba.
W warunkach normalnych magnesy nie przyciągają magnezu w zauważalny sposób, ponieważ jego właściwości paramagnetyczne są niewystarczające do wytworzenia znaczącej siły.
Aby zaobserwować efekt paramagnetyzmu magnezu, potrzebne jest bardzo silne pole magnetyczne i specjalistyczny sprzęt.
Magnez różni się od materiałów takich jak żelazo, kobalt czy nikiel, które są ferromagnetyczne i silnie reagują na magnesy.
Ze względu na swoje właściwości, magnez znajduje zastosowanie w wielu gałęziach przemysłu, jednak nie jest używany jako materiał magnetyczny.
Magnesy są nieodzownym elementem wielu urządzeń i technologii, ale jak właściwie powstają? Proces ich tworzenia zależy od rodzaju magnesu, który chcemy uzyskać – magnesów trwałych, elektromagnesów czy magnesów tymczasowych. Oto przegląd kluczowych etapów produkcji.

Proces tworzenia magnesu:
Wybór materiału: Magnesy trwałe powstają z materiałów ferromagnetycznych, takich jak żelazo, nikiel, kobalt czy stopy neodymu, żelaza i boru (NdFeB).
Kształtowanie: Materiał jest formowany w pożądany kształt poprzez odlewanie, spiekanie lub prasowanie proszków magnetycznych.
Magnetyzacja: Gotowy element jest poddawany działaniu silnego pola magnetycznego, co powoduje uporządkowanie domen magnetycznych w materiale i nadaje mu właściwości magnetyczne.
Obróbka końcowa: W zależności od przeznaczenia, magnesy mogą być dodatkowo szlifowane, pokrywane ochronną powłoką lub wykańczane w inny sposób.
Kontrola jakości: Każdy magnes jest testowany pod kątem jego właściwości magnetycznych i wytrzymałości, aby spełniał wymagania użytkowe.
Elektromagnesy: W przypadku elektromagnesów proces polega na nawinięciu przewodnika wokół rdzenia z materiału ferromagnetycznego i podłączeniu do źródła prądu elektrycznego.
Terapia polem magnetycznym jest alternatywną metodą leczenia, która zyskuje popularność, choć wciąż budzi kontrowersje. Polega na stosowaniu magnesów lub urządzeń generujących pole magnetyczne w celu poprawy zdrowia.

Kluczowe fakty:
Terapia magnetyczna jest stosowana przede wszystkim w leczeniu bólu, regeneracji tkanek i poprawie krążenia krwi.
Istnieją badania wskazujące, że pole magnetyczne o niskiej częstotliwości może wspierać leczenie stanów zapalnych, złamań kości czy zespołu cieśni nadgarstka.
Skuteczność terapii magnetycznej nie została jednoznacznie potwierdzona naukowo, a opinie ekspertów są podzielone.
Terapia ta jest zazwyczaj bezpieczna, ale może nie być odpowiednia dla osób z rozrusznikiem serca, metalowymi implantami lub w ciąży.
Zawsze konsultuj się z lekarzem przed rozpoczęciem terapii polem magnetycznym, szczególnie w przypadku poważnych schorzeń.
Magnesy neodymowe to najnowocześniejsze i najpotężniejsze magnesy trwałe, które różnią się od tradycyjnych magnesów pod wieloma względami.

Różnice między magnesami:
Siła magnetyczna: Magnesy neodymowe (NdFeB) są kilkukrotnie silniejsze niż tradycyjne magnesy ceramiczne lub ferrytowe.
Skład: Wykonane z neodymu, żelaza i boru, podczas gdy magnesy tradycyjne są najczęściej ferrytowe.
Rozmiar: Magnesy neodymowe mogą być bardzo małe, a jednocześnie niezwykle silne.
Zastosowanie: Neodymowe magnesy są stosowane w nowoczesnych technologiach, takich jak silniki elektryczne, dyski twarde czy urządzenia medyczne.
Odporność: Magnesy neodymowe są bardziej kruche i mniej odporne na wysoką temperaturę niż ferrytowe, co wymaga stosowania powłok ochronnych.
Najmocniejsze magnesy dostępne na rynku to magnesy neodymowe (NdFeB). Są one szeroko stosowane w technologiach wymagających dużej siły magnetycznej.

Dlaczego magnesy neodymowe są najmocniejsze?
Wysoka siła magnetyczna: Są zdolne do generowania bardzo silnego pola magnetycznego, nawet w małych rozmiarach.
Nowoczesne technologie: Stosowane w urządzeniach takich jak silniki elektryczne, generatory wiatrowe i głośniki.
Kompaktowość: Dzięki swojej sile mogą zastąpić większe i słabsze magnesy.
Alternatywa: Innym rodzajem silnych magnesów są magnesy samaro-kobaltowe (SmCo), które są bardziej odporne na wysokie temperatury, ale mniej powszechne i droższe.
Magnesy anizotropowe są formowane w obecności pola magnetycznego, które kieruje materiałem wzdłuż linii sił pola. Magnesy te są namagnesowane w jednym kierunku, co sprawia, że są mocniejsze. Z kolei magnesy izotropowe są formowane bez zewnętrznego pola, a ich magnetyzacja ma miejsce tylko na końcu procesu. Izotropowe magnesy są mniej magnetyczne, ale mogą być namagnesowane w dowolnym kierunku, co pozwala na tworzenie magnesów wielobiegunowych.
Więcej informacji o rodzajach materiałów magnetycznych znajdziesz na stronie technologia.
Magnesy neodymowe to jedne z najmocniejszych magnesów stałych. Magnesy neodymowe określają trzy kluczowe parametry, które wpływają na ich właściwości: remanencja, koercja (Hc), oraz maksymalna energia produkcyjna (BHmax).

Remanencja (Br) to maksymalna indukcja magnetyczna, którą magnes może utrzymać po usunięciu pola magnetycznego. Magnesy neodymowe mają zazwyczaj wartość Br od 1,1 do 1,4 T.

Koercja (Hc) to pole magnetyczne potrzebne do wymazania magnetyzacji remanentnej. Koercja magnesów neodymowych wynosi od 800 do 2000 kA/m.

Maksymalna energia produkcyjna (BHmax) to miara energii, jaką magnes może dostarczyć na jednostkę objętości. Maksymalna energia produkcyjna magnesów neodymowych to wartość między 200 a 400 kJ/m3.

Aby zmierzyć te parametry, wykorzystuje się specjalistyczne urządzenia jak gaussmetry, teslametry i magnetometry. Więcej informacji znajdziesz na stronie technologia.
Gęstość magnesu neodymowego to ważny parametr techniczny, który określa jego ciężar właściwy. Im większa gęstość, tym cięższy magnes neodymowy.

Poniżej przedstawiamy wartości gęstości dla różnych materiałów magnetycznych:
Woda: 1.0 (referencyjna wartość)
Magnes ferrytowy: około 4.8
Magnes neodymowy: około 7.5
Magnes Alnico: około 7.3
Żelazo: 7.9

Magnesy neodymowe są cięższe niż inne materiały magnetyczne, co czyni je idealnymi do różnych zastosowań przemysłowych, takich jak silniki czy generatory.
Magnesy neodymowe, znane również jako magnesy neodymowo-żelazoborowe, zostały wynalezione przez zespół naukowców z Japonii w 1984 roku. W skład zespołu wchodzili Shunichi Miyazawa, Kiyoshi Watanabe oraz Jiro Fujita. Odkrycie miało miejsce w Instytucie Badań nad Ziemiami Rzadkimi w Japonii.

Magnesy neodymowe stały się przełomem technologicznym ze względu na swoją wyjątkową magnetyczność oraz stosunkowo niewielką masę w porównaniu do tradycyjnych magnesów. Dzięki temu znalazły szerokie zastosowanie w wielu branżach, w tym elektronice, motoryzacji, medycynie.
Nie ma materiałów, które mogą całkowicie zablokować pole magnetyczne, ale są materiały, które mogą znacznie zmniejszyć jego wpływ. Takie materiały nazywają się ekranami magnetycznymi.

Najczęściej wykorzystywanym materiałem do ekranowania jest żelazo, które ma bardzo wysoką przewodność magnetyczną. Inne materiały, takie jak stal nierdzewna, kobalt, nikiel i miedź, również mogą działać jako ekrany magnetyczne, ale ich skuteczność jest mniejsza.

Ekranowanie polega na umieszczeniu materiału o wysokiej przewodności magnetycznej pomiędzy źródłem pola a chronionym obszarem. Takie materiały tworzą tzw. klatkę Faradaya, która zmienia kierunek linii sił pola magnetycznego i zmniejsza ich wpływ na chronioną przestrzeń.
Tak, każdy magnes ma minimum dwa bieguny. Współczesne magnesy mogą być magnesowane wielobiegunowo, co oznacza, że mają wiele par biegunów. Techniczne oznaczenie takich magnesów to 4-pole, które oznaczają odpowiednio jedną, dwie lub trzy pary biegunów magnetycznych.

Magnesy izotropowe, formowane bez pola magnetycznego, mogą posiadać wiele biegunów. Magnesy anizotropowe, które są formowane w silnym polu magnetycznym, mogą być również magnesowane wielobiegunowo, ale tylko w określonym kierunku.

Każdy magnes ma zawsze parzystą liczbę biegunów, co jest kluczowe dla jego działania.
Magnesy różnią się odpornością na wysoką temperaturę. Oto zakresy temperatur dla różnych typów magnesów:
Magnesy ferrytowe i samarowo-kobaltowe - od -60°C do 250°C.
Magnesy neodymowe - w zależności od rodzaju, od -130°C do 80-230°C.
Magnesy alnico - wytrzymają temperatury do 550°C.

Wszystkie magnesy dobrze znoszą niskie temperatury, jednak wyższe temperatury mogą prowadzić do utraty magnetyzmu. Należy pamiętać, że przegrzanie może skutkować utratą siły przyciągania i rozmagnesowaniem.
Separator magnetyczny to zaawansowane urządzenie składające się z wielu magnesów, które działają w tzw. obwodach magnetycznych. Te obwody wzmacniają natężenie pola magnetycznego w wybranych obszarach. Chociaż istnieje możliwość zastosowania magnesu zamiast separatora, będzie to niewydajne. Magnesy bez dodatkowych elementów są mniej efektywne. Separator magnetyczny jest dostosowany do warunków pracy i zapewnia wysoką skuteczność. Więcej informacji o separatorach magnetycznych znajdziesz na stronie separator magnetyczny.
Tak, możliwe jest wykonanie jednostronnego wałka magnetycznego, który działa jako filtr w pompie ciepła. Wałki magnetyczne są wykonane z magnesu neodymowego umieszczonego w stalowej rurze, co umożliwia przepływ płynu tylko w jednym kierunku. Tego typu wałki są szeroko stosowane w systemach grzewczych, pompach ciepła i innych urządzeniach przemysłowych do usuwania zanieczyszczeń z płynów.

Więcej informacji o separatorach magnetycznych znajdziesz na stronie separator magnetyczny.
Magnesy neodymowe przyciągają materiały ferromagnetyczne takie jak żelazo (Fe), nikiel (Ni), kobalt (Co). Żelazo, nikiel i kobalt są najczęściej przyciągane przez magnesy neodymowe. Metale stalowe również jest przyciągana przez magnesy, ponieważ ma właściwości ferromagnetyczne. Materiały, które nie reagują na magnesy to stal nierdzewna 304 oraz stal kwasoodporna 316L, znana również jako stal dentystyczna.
Symbole magnesów neodymowych obejmują litery i cyfry, które określają właściwości magnetyczne magnesu. Litery, takie jak M - "medium", H - "high", SH - "super high", UH - "ultra high", EH - "extra high" wskazują na koercję. Natomiast cyfry, takie jak N35, N42, N52, określają poziom energii magnetycznej, wyrażoną w MGsOe. Na przykład, N42SH oznacza magnes o gęstości energii 42 MGsOe oraz wysokiej odporności na rozmagnesowanie. Więcej informacji o magnesach i ich oznaczeniach znajdziesz w naszym poradniku technologicznym.
Magnesy neodymowe nie oddziałują na czyste złoto (Au), aluminium (Al) i miedź (Cu). Te metale odpychają się od magnesów w obecności zmiennego pola magnetycznego przez zjawisko prądów wirowych. Jednak magnesy neodymowe silnie przyciągają pierwiastki takie jak żelazo, nikiel, kobalt. Więcej informacji o magnesach i ich właściwościach znajdziesz na stronie technologia.
Magnes stały, znany również jako magnes trwały, to materiał o szerokiej pętli histerezy magnetycznej, który po namagnesowaniu utrzymuje swoje właściwości magnetyczne. Po zastosowaniu odpowiedniego pola magnetycznego, domeny magnetyczne w materiale ustawiają się w jednym kierunku i pozostają w tej pozycji, nawet po wyłączeniu pola. Magnesy stałe charakteryzują się koercją HcJ wynoszącą co najmniej 24 kA/m, a większa wartość koercji, tym większa odporność na zjawisko rozmagnesowania. Takie magnesy są stosowane m.in. w silnikach, gdzie odporność na pole magnetyczne jest kluczowa. Więcej informacji o magnesach znajdziesz na stronie technologia.
Magnes przyciąga żelazo, ponieważ żelazo jest metalem ferromagnetycznym, który posiada własne pole magnetyczne. Ferromagnetyki takie jak żelazo, nikiel (Ni) i kobalt (Co), posiadają domeny magnetyczne, które kierują swoje pola w jednym kierunku. Kiedy magnes zbliża się do żelaza, jego pole magnetyczne wzmacnia pól magnetycznych żelaza, co zwiększa siłę przyciągania.

Domeny magnetyczne w materiałach ferromagnetycznych to małe fragmenty, w których pole magnetyczne jest skierowane w jednym, stałym kierunku. Kiedy magnes jest zbliżany, wzmacnia pole magnetyczne w wybranych domenach, co powoduje, że pozostałe domeny zaczynają się orientować w jednym kierunku, w wyniku czego żelazo jest przyciągane przez magnes.
Nieprawda, oba bieguny magnesu mają taką samą siłę.
Więcej o biegunach znajdziesz na stronie enes magnesu.
Magnesy są powszechnie używane w naprawach karoserii. Metoda ta polega na połączeniu dużego magnesu i kuli, co pozwala na usuwanie wgnieceń bez lakierowania. Szczegółowe informacje na stronie technologia.
Magnesy neodymowe zachowują siłę przez wiele lat, tracąc mniej niż 1% na dekadę, o ile nie są narażone na niekorzystne warunki. Przechowywanie w suchym środowisku zapewnia ich długowieczność.
Siła poślizgu magnesu to wartość siły wymagana do przesunięcia magnesu po powierzchni. Zależy ona od tarcia oraz mocy magnesu. Sprawdź kalkulator.
Magnesy przyciągają się, gdy ich przeciwne bieguny są skierowane ku sobie. Jest to kluczowe prawo magnetyzmu, które powoduje działanie siły magnetycznej.
Magnesy neodymowe pracują w zakresie temperatur od -130°C do nawet 230°C, w zależności od ich typu.
Aby zwiększyć siłę magnesu, należy utrzymywać magnes w odpowiednich warunkach, stosować dodatkowe pola magnetyczne oraz korzystać z odpowiednich konfiguracji magnetycznych.
Magnesy neodymowe mogą utrzymać swoją siłę magnetyczną przez wiele lat, pod warunkiem, że są przechowywane w odpowiednich warunkach.
Magnesy neodymowe tracą moc bardzo powoli. Strata wynosi mniej niż 1% na 10 lat, o ile są przechowywane w odpowiednich warunkach. Więcej informacji znajdziesz w dziale trwałość magnesów.
Kod PKWiU dla magnesów to 26.80.99, dotyczący różnych produktów magnetycznych. Szczegółowe informacje znajdziesz w sekcji PKWiU magnesów.
"Magnesowanie przez grubość" odnosi się do metody, w którym linia magnetyczna przechodzi przez grubość magnesu, a nie przez długość czy szerokość. Tego rodzaju magnesy są często wykorzystywane w aplikacjach technologicznych, gdy konieczne jest specyficzna orientacja pola magnetycznego.
Blokowanie pola magnetycznego wymaga użycia materiałów takich jak mu-metal, które przesłaniają linie magnetyczne. Nie ma materiału, który całkowicie zatrzymuje pole magnetyczne, ale pewne substancje mogą zmniejszyć efektywność. Więcej informacji znajdziesz na stronie materiały do blokowania pola.
Magnesy neodymowe są zabezpieczane, aby zapobiec utlenianiu, przy kontakcie z wilgocią. Najpopularniejsze powłoki to nikiel i złoto, które przedłużają żywotność magnesów. Dowiedz się więcej o powłokach na stronie powłoki magnesów.
Magnesy odpychają się, gdy ich jednakowe bieguny są ustawione do siebie. To zjawisko wynika z zasad elektromagnetyzmu. Kiedy biegun północny jednego magnesu jest zwrócony w stronę północnego bieguna drugiego (lub biegun południowy w stronę południowego), magnesy te się odpychają. To fundamentalne zjawisko elektromagnetyzmu.
Magnesy neodymowe to związki składające się z neodymu, boru oraz żelaza. Ich taryfa celna to 8505199089. Oznacza to, że są one klasyfikowane jako magnesy w międzynarodowym systemie kodowania celnego. Warto podkreślić, że produkcja tych magnesów jest globalnie rozpowszechniona, przy czym Chiny są głównym producentem. Magnesy neodymowe są także wytwarzane w krajach takich jak Stany Zjednoczone, Rosja i inne, aby sprostać rosnącemu popytowi na te wyjątkowo silne magnesy. Przed importem warto zweryfikować stawki celne w systemach ISZTAR lub TARIC oraz upewnić się, czy produkt spełnia wymogi certyfikacyjne (np. CE, RoHS), zwłaszcza jeśli ma kontakt z żywnością lub skórą.
Bieguny magnesu da się rozpoznać za pomocą kompasu lub czujników Halla. W kompasie, igła wskazuje biegun N i S. Więcej informacji znajdziesz w dziale pole magnetyczne.

Bezpieczeństwo

Zasady bezpiecznego użytkowania magnesów, w tym informacje o potencjalnych zagrożeniach oraz odpowiedzialnym obchodzeniu się z magnesami.

Tak, magnesy neodymowe są bezpieczne dla zdrowia, jeśli są odpowiednio użytkowane. Należy jednak pamiętać, że niektóre magnesy neodymowe są bardzo silne i mogą być niebezpieczne, jeśli są połykane lub wchodzą w kontakt z ciałem w nieodpowiedni sposób.
Temperatura wpływa na siłę magnesów. Magnesy neodymowe mogą osłabnąć przy wysokich temperaturach. Zakres pracy wynosi od -130°C do nawet 230°C w zależności od rodzaju magnesu.
Magnesy neodymowe są powlekane, aby zapobiec korozji. Najczęściej stosuje się powłoki trójwarstwowe, które zwiększają odporność na wilgoć. Więcej w dziale technologia.
Magnesy neodymowe nie są całkowicie odporne przez wilgoć. Stały kontakt z wodą może prowadzić do utleniania, jeśli magnes ma odpowiednią powłokę ochronną. Więcej o zabezpieczaniu magnesów przed wilgocią znajdziesz w dziale ochrona przed wilgocią.
Magnesy neodymowe składają się głównie z neodymu, żelaza i boru. Bez ochrony, ich żelazo szybko ulega korozji, szczególnie w wilgotnym środowisku. W celu ochrony, większość magnesów neodymowych jest pokrywana powłoką ochronną, najczęściej niklową, co zapewnia odporność na korozję. Powłoki plastikowe i złote również są stosowane, choć rzadziej.
Magnesy neodymowe są bardzo mocne, znacznie przewyższając inne rodzaje magnesów. Ich siła stwarza potencjalne ryzyko, jeśli nie są odpowiednio użytkowane. W większych rozmiarach, mogą prowadzić do poważnych obrażeń, jeśli części ciała zostaną nimi przyciśnięte. Zawsze stosuj środki ostrożności, aby zapobiec urazom. Obejrzyj ten film, aby zobaczyć przykłady: YouTube.
Magnesy mogą uszkodzić działanie telefonów komórkowych, szczególnie w przypadku silnych magnesów neodymowych. Oddziałują na kompasu, sensorów magnetycznych, a nawet elementów wyświetlacza.

Dla bezpieczeństwa unikaj przechowywania telefonu w pobliżu silnych magnesów. Więcej informacji znajdziesz na stronie niebezpieczne magnesy.
Obróbka magnesów neodymowych wiążą się z ryzykiem. Powstałe opiłki i drobinki zanieczyszczają urządzenia, co uszkadza sprzęt. Twardość i kruchość materiału czyni proces bardziej wymagającym.
Większość ciał obcych, takich jak magnesy, połyka się bez powikłań i przechodzi przez przewód pokarmowy. Zdecydowana większość przypadków kończy się naturalnym wydaleniem w ciągu krótkiego czasu. Jeśli dziecko połknie tylko jeden magnes lub monetę, wystarczy podać mu dużo płynów i bułki, by pomóc w naturalnym wydaleniu. W przypadku połknięcia dwóch magnesów, może wystąpić problem, ponieważ mogą się one magnesy mogą się złączyć w przewodzie pokarmowym. W takim przypadku wymagana jest konsultacja z lekarzem i wykonać RTG, aby sprawdzić ich lokalizację i stan.

Najważniejsze jest, aby pozostać spokojnym i dać dziecku czas, zamiast szukać natychmiastowej pomocy. Więcej informacji znajdziesz na stronie niebezpieczne magnesy.

Ciekawostki o magnesach neodymowych

Odkryj interesujące fakty dotyczące magnesów neodymowych – od ich historii po niezwykłe właściwości.

Magnes neodymowy to nie to samo co suplement diety, tj. MAGNEZ – to pierwiastek z grupy ziem rzadkich, ponieważ neodym znajduje się w układzie okresowym SI jako pierwiastek ziem rzadkich. Obecnie są one uznawane za najmocniejsze magnesy trwałe dostępne na rynku. Magnesy z neodymu są produkowane z połączenia pierwiastków takich jak neodym, żelazo i bor o strukturze Nd2Fe14B. Na chwilę obecną są to najmocniejsze magnesy produkowane w masowej skali.
Zalety magnesów neodymowych:
największa gęstość energii względem masy,
stabilność magnetyczna na poziomie utraty 1% na dekadę,
niski koszt produkcji.
Magnes neodymowy wynalazł japoński naukowiec Masato Sagawa. On jako pierwszy podjął prace związane z magnetycznymi własnościami pierwiastków ziem rzadkich prowadził w Fujitsu Laboratories przez około dziesięć lat. Później dołączył do Sumimoto Special Metals i uważa się, że właśnie tam, na początku lat 80-tych w końcu opracował technologię i stworzył współczesny spiekany magnes neodymowy oparty na związku Nd2Fe14B. Odtąd widać bardzo szybki rozwój tej dziedziny nauki.

Najczęstsze problemy użytkowników

Znajdź rozwiązania problemów, takich jak korozja, utrata siły magnetycznej czy trudności w montażu.

Magnesy przyczepiają się do lodówki ponieważ powierzchnia lodówki jest najczęściej wykonana z metalu, która jest przewodnikiem magnetycznym. Współczesne lodówki mają stalowe powierzchnie na zewnętrznej części, które sprzyjają przyleganiu magnesów.
Wybór odpowiedniego magnesu neodymowego zależy od wielu czynników, które warto wziąć pod uwagę, aby zapewnić jego skuteczność i bezpieczeństwo:

Wskazówki wyboru:
Siła magnetyczna: Zastanów się, jaka moc jest potrzebna do Twojego zastosowania.
Rozmiar i kształt: Upewnij się, że magnes pasuje do miejsca, w którym będzie używany.
Powłoka ochronna: Wybierz magnes z powłoką odporną na korozję, np. niklowaną.
Temperatura pracy: Magnesy neodymowe mogą tracić swoje właściwości w wysokich temperaturach.
Zastosowanie: Sprawdź, czy magnes spełnia wymagania dla przemysłu, elektroniki lub domowych potrzeb.
Magnesy na lodówce są czasami uznawane za niebezpieczne ze względu na ryzyko porysowania powierzchni lodówki, szczególnie gdy są niedbale przesuwane. Dodatkowo, wyjątkowo mocne magnesy potencjalnie mogą wpływać na elektronikę w niektórych lodówkach.
Należy usunąć magnesy z lodówki, jeżeli istnieje ryzyko, że mogą uszkodzić jej drzwi. Dodatkowo, silne magnesy potencjalnie mogą zakłócać działanie z układami elektronicznymi lodówki. Niekiedy zaleca się wyjęcie ich, aby zapobiec trwałym zniszczeniom, szczególnie jeśli są magnesy przesuwane po powierzchni bez ostrożności.
Łowienie magnesem jest legalne w Polsce, choć brak szczegółowych regulacji bywa źródłem niejasności. W innych krajach kwestie te reguluje prawo lokalne:
W Stanach Zjednoczonych ogólnie rzecz biorąc, łowienie magnesem jest dozwolone z wyjątkami, np. w Karolinie Południowej, gdzie prawo zakazuje usuwania artefaktów z wód stanowych.
W Indianie, od 2025 roku, wymagane jest uzyskanie pozwolenia na łowienie magnesem.
W Wielkiej Brytanii i USA istnieją ograniczenia dotyczące łowienia magnesem w kontekście usuwania historycznych artefaktów.
Aby uniknąć problemów, skonsultuj się z lokalnymi władzami przed rozpoczęciem takiej działalności.
Magnesy mogą być szkodliwe dla lodówki, jeśli uszkodzą jej wykończenie. Ciągłe przemieszczanie magnesów potencjalnie prowadzić do zadrapania. Jednakże, standardowe wykorzystanie magnesów mało kiedy powoduje istotnych uszkodzeń.
Aby zdjąć klipsy antykradzieżowe z ubrania, możesz użyć magnesu do klipsów, takiego jak Magnes Ultra. Należy go przyłożyć do klipsa i delikatnie poruszaj, aż mechanizm się rozłączy.

Inne metody obejmują użycie narzędzi ręcznych lub zapalniczki, lutownicy podgrzewając plastik na wystającej części po czym kombinerkami lub nożyczkami rozsunąć plastik do odcięcia zabezpieczenia, zachowaj ostrożność, aby uniknąć uszkodzeń.

Jeśli zabezpieczenie używa taśmy, spróbuj delikatnie je odkleić, podgrzewając go np. suszarką używając np. patyczka do uszu.

W przypadku trudniejszych zabezpieczeń, skonsultuj się z działem pomocy w sklepie. Więcej informacji znajdziesz na stronie klipsy antykradzieżowe.
Magnesy mogą nie przyciągać skutecznie, jeśli metal nie jest ferromagnetyczny lub istnieje bariera między magnesem a powierzchnią. Sprawdź szczegóły w naszym przewodniku powłoki.
Nie zaleca się umieszczania magnesów na lodówce, gdyż mogą one zepsuć jej powierzchnię. Ponadto, masywne magnesy mogą deformować cienkie metalowe powierzchnie lodówek.
Magnesy mogą niszczyć lodówkę, jeśli ich przesuwanie prowadzi do uszkodzeniami powierzchni lodówki. Ponadto, ekstremalne magnesy mogą zakłócać elektroniczne systemy sterowania w niektórych nowoczesnych lodówkach.
Jeśli planujesz poszukiwania z użyciem magnesów neodymowych, istnieje kilka ważnych rzeczy, o których musisz pamiętać przy wyborze odpowiedniego modelu.
Po pierwsze, magnesy neodymowe można podzielić na dwa typy: ze względu na konstrukcję i sposób mocowania liny. Jeśli chodzi o mocowanie, magnesy montowane od góry sprawdzą się w łowieniu z pomostów, mostów czy też do sprawdzania studni. Są one również idealne do łowienia z łodzi.
Modele takie jak DHIT Magnet GOLD występują w pięciu mocach od 120 kg do 600 kg. Natomiast magnesy z podwójnym mocowaniem, takie jak DHIT Magnet GOLD, są najbardziej uniwersalne i pozwalają na łowienie zarówno z góry, jak i z boku (dwa uchwyty można śrubą złączyć po bokach i szukać - łowić - parami).
Jeśli chodzi o popularność, najczęściej wybieranymi modelami są: F200x2 GOLD, F300x2 GOLD oraz F550x2. Jeśli masz wątpliwości co do wyboru odpowiedniego magnesu, zachęcamy do skontaktowania się z nami. Chętnie doradzimy i pomożemy wybrać model, który najlepiej spełni Twoje oczekiwania i cele.
Więcej informacji o magnesach do poszukiwań w wodzie znajdziesz na stronie jaki magnes do poszukiwań? lub kategorii magnesy do poszukiwań.
logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98